Let F, G, and H be simple graphs. We say F → (G, H) if for every 2-coloring of the edges of F there exist a monochromatic G or H in F. The Ramsey number r(G, H) is defined as min {|V (F)| : F → (G, H)}, the size Ramsey number (G, H) is defined as min {|E(F)| : F → (G, H)}, and the restricted size Ramsey number r*(G, H) is defined as min {|E(F)| : F → (G, H), |V (F)| = r(G, H)}. In this paper we give a lower bound for the restricted size Ramsey number for a path P3 versus Pn. We also give the upper bound and the exact restricted size Ramsey number for some small values of n.

1.
E.T.
Baskoro
,
Y.
Nuraeni
, and
A.A.G.
Ngurah
,
Upper bounds for the size Ramsey numbers for P3 versus C3t or Pn
,
Journal of Prime Research in Mathematics
2
,
141
146
(
2006
).
2.
J.
Beck
, On size Ramsey number of paths, trees, and circuits II, in: Mathematics of Ramsey theory,
Algorithms Combin
.
5
(eds.
J.
Nesětřil
,
V.
Rödl
),
Springer
,
Berlin
,
1990
,
34
45
.
3.
S.A.
Burr
,
A survey of noncomplete Ramsey theory for graphs
,
Ann. New York Acad. Sci.
328
,
58
75
(
1979
).
4.
P.
Erdös
and
R.J.
Faudree
, Size Ramsey functions, in: Sets, graphs, and numbers,
Colloq. Math. Soc. Janos Bolyai
60
(eds.
G.
Halasz
, et al.
),
North-Holland Publishing Co.
,
Amsterdam
1992
,
219
238
.
5.
P.
Erdös
,
R.J.
Faudree
,
C.C.
Rousseau
, and
R.H.
Schelp
,
The size Ramsey number
,
Periodica Mathematica Hungarica
,
9
, Issue
1-2
,
145
161
(
1978
).
6.
R.J.
Faudree
and
R.H.
Schelp
, A survey of results on the size Ramsey number,
Paul Erdös and his mathematics, II
(
Budapest
,
2002
)
291
309
.
7.
R.J.
Faudree
and
J.
Sheehan
,
Size Ramsey numbers for small-order graphs
,
J. Graph Theory
7
,
53
55
(
1983
).
8.
R.J.
Faudree
and
J.
Sheehan
,
Size Ramsey numbers involving stars
,
Discrete Math
46
,
151
157
(
1983
).
9.
L.
Gerencsér
and
A.
Gyárfás
,
On Ramsey-type problems
.
Ann. Univ. Eötvös Sect. Math.
10
,
167
170
(
1967
).
10.
C.
Imron
and
E.T.
Baskoro
,
Bilangan Ramsey sisi dari (r̂)(P3, Pn
),
Berkala MIPA
16
No.
2
,
7
12
(
2006
).
11.
R.
Lortz
and
I.
Mengersen
,
Size Ramsey results for paths versus stars
,
Australas. J. Combin.
,
18
,
3
12
(
1998
).
12.
D.R.
Silaban
,
E.T.
Baskoro
, and
S.
Uttunggadewa
,
On the restricted size Ramsey number for P3 versus Cn
, accepted in
Procedia Computer Science
.
This content is only available via PDF.
You do not currently have access to this content.