Given a graph G, a subset SV (G) is an independent [1, 2]-set if no two vertices in S are adjacent and for every vertex νV (G)\S, 1 ≤ |N(ν) ∩ S| ≤ 2, that is, every vertex νV (G)\S is adjacent to at least one but not more than two vertices in S. In this paper, we discuss the existence of independent [1, 2]-sets in a family of trees called caterpillars.

1.
C.
Berge
,
The Theory of Graphs and its Applications
,
Methuen
,
London
,
1962
, pp.
40
51
.
2.
J. A.
Bondy
, and
U. S. R.
Murty
,
Graph Theory
,
Springer
,
New York
,
2008
, pp.
1
30
.
3.
M.
Chellali
,
O.
Favaron
,
T. W.
Haynes
,
S. T.
Hedetniemi
, and
A.
McRae
,
Australas. J. Combin.
59
,
144
156
(
2014
).
4.
M.
Chellali
,
T. W.
Haynes
,
S. T.
Hedetniemi
, and
A.
McRae
,
Discrete Appl. Math.
161
,
2885
2893
(
2013
).
5.
W.
Goddard
and
M. A.
Henning
,
Discrete Math.
313
,
839
854
(
2013
).
6.
T. W.
Haynes
,
S. T.
Hedetniemi
, and
P. J.
Slater
,
Fundamentals of Domination in Graphs
,
Marcel Dekker, Inc.
,
New York
,
1998
, pp.
1
71
.
7.
C.-H.
Liu
,
S.-H
,
Poon
, and
J.-Y.
Lin
,
Theor. Comput. Sci.
562
,
1
22
(
2015
).
8.
O.
Ore
,
Theory of Graphs
,
American Mathematical Society
,
Providence, Rhode Island
,
1962
, pp.
206
223
.
9.
X.
Yang
and
B.
Wu
,
Discrete Appl. Math.
175
,
79
86
(
2014
).
10.
C.
Zhao
and
C.
Zhang
,
Appl. Math. Sci.
9
,
3187
3191
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.