This paper discusses a finite group associated to a machine called a lamplighter, having n lamps with h settings arranged in a circle around a single lighter. The properties of the group are discussed. Criteria for determining whether group elements are conjugates, commutators or in the center are established.

1.
D. S.
Dummit
and
R. M.
Foote
,
Abstract Algebra
, 3rd Edition (
John Wiley and Sons, Inc.
,
New Jersey
,
2004
).
2.
I. M.
Niven
,
Mathematics of Choice Or How To Count Without Counting
(
Random House, Inc.
,
New York
,
1965
).
3.
J. A.
Gallian
,
Contemporary Abstract Algebra
, 8th Edition (
Brooks/Cole
,
Cengage Learning, Boston, Massachusetts
,
2013
).
4.
J. A.
Siehler
, “
The Finite Lamplighter Groups: A Guided Tour
” in
The College Mathematics Journal
24
,
203
211
(
2012
).
5.
R.
Lyons
,
R.
Pemantle
and
Y.
Peres
, “
Random Walks on the Lamplighter Group
” in
The Annals of Probability
24
No.
4
,
1993
2006
(
1996
).
6.
E. W.
Weisstein
,
Necklace
from MathWorld—A Wolfram Web Source
. http://mathworld.wolfram.com/Necklace.html
7.
M. C.
Mamaril
, “
The Lamplighter Group
,” Undergraduate Thesis,
Ateneo de Manila University
,
2014
.
8.
S.
Eckenthal
, “
The Lamplighter Group
,” Senior Theses,
Trinity College
,
Hartford, CT
,
2012
. Trinity College Digital Repository, http://digitalrepository.trincoll.edu/theses/258
9.
The GAP Group
(
2008
).
GAP – Groups, Algorithms and Programming
,
Version 4.4.12
. http://www.gap-system.org
10.
Wolfram Research
(
2011
).
Mathematica version 8.0 for Microsoft Windows (32-bit)
. http://www.wolfram.com
This content is only available via PDF.
You do not currently have access to this content.