For the Fourier transform: ℱ of a non-integrablefunction φ, we exploit theresolvent ℛ forthe harmonic oscillator Hamiltonian, where the integral kernel for ℛ can be represented using the confluent hypergeometric function. Due to the commutativity of ℱ and ℛ, ℱ can be regarded by ℛ−1ℱℛ. In the case of φ(x) = 1, for example, it follows that(ℛφ)(x) is continuous on ℝ and that (ℛφ)(x) ≃ x−2(|x| → ∞)), so that ℛφ turns outto be integrable over ℝ. The finding that(ℱℛ)φ is exponentially localized indicatesthat the mapℱℛ:φ ↦ ¢ can be used as data compression of φ. Moreover, the inverse map:ℛ−1−1:¢ ↦ φ is well defined, which implies that the data decompression into φ can be made in a numerical calculation friendly way.

1.
A. P.
Prudnikov
,
Yu. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series
, Vol.
2
,
Special Functions
(
Gordon and Breach, New York
,
1986
), p.
710
.
2.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
,
Part 1
(
McGraw-Hill
,
London
,
1953
), p.
781
.
3.
L. B.
Rédei
,
Acta Phys. Acad. Sci. Hung.
45
,
149
151
(
1978
).
4.
M. D.
Greenberg
,
Applications of Green’s Functions in Science and Engineering
(
Dover
,
New York
,
2015
), pp.
46
47
.
5.
I.
Fredholm
,
Acta Math.
27
,
365
390
(
1903
).
6.
K.
Yosida
,
Functional Analysis
(
Springer
,
Berlin
,
1995
), 6th Ed., p.
277
.
7.
H.
Buchholz
,
The Confluent Hypergeometric Function
(
Springer
,
Berlin
,
2014
), p.
140
.
8.
A. P.
Prudnikov
,
Yu. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series
, Vol.
2
,
Special Functions
(
Gordon and Breach, New York
,
1986
), p.
703
.
9.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series, and Products
(
Academic, Burlington, MA
,
2007
), 7th Ed., p.
1023
.
10.
A. P.
Prudnikov
,
Yu. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series
, Vol.
1
,
Elementary Functions
(
Gordon and Breach, New York
,
1986
), p.
713
.
This content is only available via PDF.
You do not currently have access to this content.