For the Fourier transform: ℱ of a non-integrablefunction φ, we exploit theresolvent ℛ forthe harmonic oscillator Hamiltonian, where the integral kernel for ℛ can be represented using the confluent hypergeometric function. Due to the commutativity of ℱ and ℛ, ℱ can be regarded by ℛ−1ℱℛ. In the case of φ(x) = 1, for example, it follows that(ℛφ)(x) is continuous on ℝ and that (ℛφ)(x) ≃ x−2(|x| → ∞)), so that ℛφ turns outto be integrable over ℝ. The finding that(ℱℛ)φ is exponentially localized indicatesthat the mapℱℛ:φ ↦ ¢ can be used as data compression of φ. Moreover, the inverse map:ℛ−1ℱ−1:¢ ↦ φ is well defined, which implies that the data decompression into φ can be made in a numerical calculation friendly way.
REFERENCES
1.
A. P.
Prudnikov
, Yu. A.
Brychkov
, and O. I.
Marichev
, Integrals and Series
, Vol. 2
, Special Functions
(Gordon and Breach, New York
, 1986
), p. 710
.2.
P. M.
Morse
and H.
Feshbach
, Methods of Theoretical Physics
, Part 1
(McGraw-Hill
, London
, 1953
), p. 781
.3.
L. B.
Rédei
, Acta Phys. Acad. Sci. Hung.
45
, 149
–151
(1978
).4.
M. D.
Greenberg
, Applications of Green’s Functions in Science and Engineering
(Dover
, New York
, 2015
), pp. 46
–47
.5.
I.
Fredholm
, Acta Math.
27
, 365
–390
(1903
).6.
K.
Yosida
, Functional Analysis
(Springer
, Berlin
, 1995
), 6th Ed., p. 277
.7.
8.
A. P.
Prudnikov
, Yu. A.
Brychkov
, and O. I.
Marichev
, Integrals and Series
, Vol. 2
, Special Functions
(Gordon and Breach, New York
, 1986
), p. 703
.9.
I. S.
Gradshteyn
and I. M.
Ryzhik
, Tables of Integrals, Series, and Products
(Academic, Burlington, MA
, 2007
), 7th Ed., p. 1023
.10.
A. P.
Prudnikov
, Yu. A.
Brychkov
, and O. I.
Marichev
, Integrals and Series
, Vol. 1
, Elementary Functions
(Gordon and Breach, New York
, 1986
), p. 713
.
This content is only available via PDF.
© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.