We present a method for computing the partition function of a caloron ensemble taking into account the interaction of calorons. We focus on caloron-Dirac string interaction and show that the metric that Diakonov and Petrov offered, works well in the limit where this interaction occurs. We suggest computing the correlation function of two polyakov loops by applying Ewald’s method.

1.
D.
Diakonov
,
Nucl. Phys. Proc. Suppl
195
,
5
(
2009
), hep-ph/0906.2456.
2.
D.
Diakonov
and
N.
Gromov
,
Phys. Rev. D
72
,
025003
(
2005
), hep-th/0502132.
3.
D.
Diakonov
,
N.
Gromov
,
V.
Petrov
and
S.
Slizovskiy
,
Phys. Rev. D
70
,
036003
(
2004
), hep-th/0404042.
4.
P.
Gerhold
,
E. M.
Ilgenfritz
, and
M.
Muller-Preussker
,
Nucl. Phys. B
774
,
268
, (
2007
), hep-ph/0610426.
5.
D.
Diakonov
and
P.
Petrov
,
Nucl. Phys. B
245
,
259
(
1984
).
6.
F.
Bruckmann
,
S.
Dinter
,
E. M.
Ilgenfritz
,
M.
Muller-Preussker
,
M.
Wagner
,
Phys. Rev. D
79
,
116007
(
2009
), hep-ph/0903.3075.
7.
D.
Diakonov
,
V.
Petrov
,
Phys. Rev. D
76
,
056001
(
2007
), hep-th/0704.3181.
8.
F.
Bruckmann
,
S.
Dinter
,
E. M.
Ilgenfritz
,
B.
Maier
,
M.
Muller-Preussker
,
M.
Wagner
,
Phys. Rev. D
85
,
034502
(
2012
), hep-ph/1111.3158.
This content is only available via PDF.
You do not currently have access to this content.