The dissociation of heavy quarkonium seen in heavy-ion collisions is a phenomena that allows to extract information of the produced thermal medium. This was believed to be due to the screening of the static potential but recently perturbative computations and some lattice studies have pointed out the possibility of having an imaginary part of the potential that would also contribute to dissociation. In recent years a program to study heavy quarkonium with the use of non-relativistic effective field theories (EFTs) has been started, this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. However until now these studies have been done assuming thermal equilibrium. In this work we will discuss what happens in the EFT formalism when heavy quarkonium is in a medium that is not in thermal equilibrium and what is the expected suppression when a medium with a time dependent effective temperature that follows Bjorken evolution is considered. This will be done adapting previous results from different temperature regimes.

1.
T.
Matsui
, and
H.
Satz
,
Phys.Lett. B
178
,
416
(
1986
).
2.
M.
Laine
,
O.
Philipsen
,
P.
Romatschke
, and
M.
Tassler
,
JHEP
0703
,
054
(
2007
), hep-ph/0611300.
3.
N.
Brambilla
,
J.
Ghiglieri
,
A.
Vairo
, and
P.
Petreczky
,
Phys.Rev. D
78
,
014017
(
2008
), arXiv:0804.0993.
4.
M. A.
Escobedo
, and
J.
Soto
,
Phys.Rev. A
78
,
032520
(
2008
), arXiv:0804.0691.
5.
N.
Brambilla
,
M. A.
Escobedo
,
J.
Ghiglieri
,
J.
Soto
, and
A.
Vairo
,
JHEP
1009
,
038
(
2010
), arXiv:1007.4156.
6.
A.
Rothkopf
,
T.
Hatsuda
, and
S.
Sasaki
,
Phys.Rev.Lett.
108
,
162001
(
2012
), arXiv:1108.1579.
7.
N.
Brambilla
,
M. A.
Escobedo
,
J.
Ghiglieri
, and
A.
Vairo
,
JHEP
1305
,
130
(
2013
), arXiv:1303.6097.
8.
M. A.
Escobedo
, and
J.
Soto
,
Phys.Rev. A
82
,
042506
(
2010
), arXiv:1008.0254.
9.
S.
Biondini
,
N.
Brambilla
,
M. A.
Escobedo
, and
A.
Vairo
,
Applications of finite temperature quarkonium potential and anisotropy
,
TUM-EFT 54/14
(
2014
).
11.
S.
Chatrchyan
, et al,
Phys.Rev.Lett.
109
,
222301
(
2012
), arXiv:1208.2826.
12.
B. B.
Abelev
, et al,
Phys.Lett. B
738
,
361
372
(
2014
), arXiv:1405.4493.
13.
L. D.
McLerran
, and
T.
Toimela
,
Phys.Rev. D
31
,
545
(
1985
).
14.
N.
Brambilla
,
M. A.
Escobedo
,
J.
Soto
, and
A.
Vairo
,
Heavy quarkonium suppression in a fireball
,
TUM-EFT 55/14
(
2014
).
15.
W.
Caswell
, and
G.
Lepage
,
Phys.Lett. B
167
,
437
(
1986
).
16.
G. T.
Bodwin
,
E.
Braaten
, and
G. P.
Lepage
,
Phys.Rev. D
51
,
1125
1171
(
1995
), hep-ph/9407339.
17.
A.
Pineda
, and
J.
Soto
,
Nucl.Phys.Proc.Suppl.
64
,
428
432
(
1998
), hep-ph/9707481.
18.
N.
Brambilla
,
A.
Pineda
,
J.
Soto
, and
A.
Vairo
,
Nucl.Phys. B
566
,
275
(
2000
), hep-ph/9907240.
19.
G.
Lindblad
,
Commun.Math.Phys.
48
,
119
(
1976
).
20.
Y.
Akamatsu
(
2014
), arXiv:1403.5783.
21.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Computer Physics Communications
183
,
1760
1772
(
2012
).
22.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Computer Physics Communications
184
,
1234
1240
(
2013
).
23.
R.
Baier
, and
R.
Rückl
,
Zeitschrift für Physik C Particles and Fields
19
,
251
266
(
1983
).
24.
P. L.
Cho
, and
A. K.
Leibovich
,
Phys.Rev. D
53
,
6203
6217
(
1996
), hep-ph/9511315.
25.
J.
Casalderrey-Solana
,
JHEP
1303
,
091
(
2013
), arXiv:1208.2602.
26.
J.
Bjorken
,
Phys.Rev. D
27
,
140
151
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.