With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s−1 and 1.01 × 104 M−1.s−1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M−1.s−1.

1.
M. M.
Sánchez-Rivera
,
F. J. L.
,
García-Suárez
,
M.
,
Velázquez del Valle
,
F.
,
Gutierrez-Meraz
, F. and
L.A.
Bello-Pérez
,
Carbohydr. Polym.
62
,
50
56
(
2005
).
2.
D.
Kuakpetoon
and
Y.
Wang
,
Carbohydr. Res.
341
,
1896
1915
(
2006
).
3.
S.
Konoo
,
H.
Ogawa
,
H.
Mizuno
and
N.
Iso
,
J. Jpn. Soc. Food Sci. Technol.
43
(
8
),
880
886
(
1996
).
4.
P. Y.
Mazur
,
L. I.
Stolyarova
,
L. V.
Muraschkina
and
V. A.
Dyatlov
,
Emaehrung
13
,
155
156
(
1989
).
5.
S.
Chattopadhyay
,
R. S.
Singhal
and
P. R.
Kulkarni
,
Carbohydr. Polym.
34
,
203
212
(
1997
).
6.
O. S.
Lawala
,
K. O.
Adebowale
,
B. M.
Ogunsanwo
,
L. L.
Barba
and
N. S.
Ilo
,
Int. J. Biol. Macromol.
35
,
71
79
(
2005
).
7.
Y. J.
Wang
and
L.
Wang
,
Carbohydr. Polym.
52
,
207
217
(
2003
).
8.
P.
Tolvanen
,
A.
Sorokin
,
P.
Mäki-Arvela
,
A.
Leveneur
,
D. Y.
Murzin
and
T.
Salmi
,
Ind. Eng. Chem. Res.
50
,
749
757
(
2011
).
9.
M.
El-Sheikh
,
M. A.
Ramadan
and
A.
El-Shafie
,
Carbohydr. Polym.
80
,
266
269
(
2010
).
10.
R.
Hage
and
A.
Lienke
,
J. Mol. Catal. A: Chemical
251
,
150
158
(
2006
).
11.
R. E.
Harmon
,
S. K.
Gupta
and
J.
Johnson
,
Starch
23
,
347
349
(
1971
).
12.
R. E.
Harmon
,
S. K.
Gupta
and
J.
Johnson
,
Starch
24
,
8
11
(
1972
).
13.
M.
Muruganandham
and
M.
Swaminathan
,
Dyes and Pigment
,
62
,
269
275
(
2004
).
14.
P.
Liu
,
C.
Li
,
X.
Liang
,
J.
Xu
,
G.
Lu
and
F.
Ji
,
Environ. Technol.
,
34
(
15
),
2231
2239
(
2013
).
15.
A. M.
Nienow
,
J. C.
Bezares-Cruz
,
I. C.
Poyer
,
I.
Hua
and
C. T.
Jafvert
,
Chemosphere
72
,
1700
1705
(
2008
).
16.
P.
Chelme-Ayala
,
M. G.
El-Din
and
D. W.
Smith
,
Water Res.
44
,
2221
2228
(
2010
).
17.
A.
Aleboyeh
,
Y.
Moussa
and
H.
Aleboyeh
,
Dyes and Pigments
66
,
129
134
(
2005
).
18.
S. J. H. F.
Arts
,
E. J. M
Mombarg
,
H.
van Bekkum
and
R. A.
Sheldon
,
Synthesis
,
597
613
(
1997
).
19.
H. S.
Isbell
and
H. L.
Frush
,
Carbohydr. Res.
1987
;
161
,
181
193
(
1987
).
20.
A.
De Luis
,
J. I.
Lombraña
and
A.
Menendez
,
Environ. Prog. Sustain. Energy
,
30
(
2
),
196
207
(
2011
).
21.
G. V.
Buxton
,
C. L.
Greenstock
,
W. P.
Helman
and
A. B.
Ross
,
J. Phys. Chem. Ref. Data
17
,
513
886
(
1988
).
22.
J.
Weinstein
,
H. J.
Benon
and
H. J.
Bielski
,
J. Am. Chem. Soc.
101
,
58
62
(
1979
).
23.
A. J.
Elliot
and
G. V.
Buxton
,
J. Chem. Soc., Faraday Trans 1
88
,
2465
2470
(
1992
).
24.
R. J.
Smith
, “Characterization and analysis of starches” in
Starch Chemistry and Technology
,
edited by
R. L.
Whistler
and
E. F.
Paschall
(
Academic Press
,
New York
,
1967
), pp.
620
625
.
25.
I.
Nicole
,
J.
De Laat
,
M.
Doré
,
J. P.
Duguet
and
C.
Bonnel
,
Water Res.
24
:
157
168
(
1990
).
26.
J.
De Laat
,
E.
Tace
and
M.
Doré
,
Water Res.
28
,
2507
2519
(
1994
).
27.
H.
Yao
,
P.
Sun
,
D.
Minakata
,
J. C.
Crittenden
and
C. H.
Huang
,
Environ. Sci. Technol.
47
, |p4581−4589 (
2013
).
28.
G.
Wittmann
,
I.
Horváth
and
A.
Dombi
,
Ozone: Sci. Eng.: J. Int. Ozone Assoc.
24
(
4
),
281
291
(
2002
).
29.
R.
Alnaizy
and
A.
Akgerman
,
Adv. Environ. Res.
4
,
233
244
(
2000
).
30.
A. G.
Hildebrandt
and
I.
Roots
,
Arch. Biochem. Biophys.
171
,
385
397
(
1975
).
31.
S. C.
Fry
,
Biochem. J.
332
,
507
515
(
1998
).
32.
J. C.
Crittenden
,
K.
Howe
,
D. W.
Hand
,
R. R.
Trussell
and
G.
Tchobanoglous
,
MWH’s Water Treatment: Principles and Design
(
John Wiley & Sons, New York
,
2012
), pp.
1415
1484
.
33.
A.
De Luis
,
J. I.
Lombraña
and
A.
Menendez
,
J. Adv. Oxidation Technol.
11
,
21
32
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.