We proved the Catalan’s Identity and obtained the sum using the same generating matrix for the k–Lucas sequence, Ln+1 = kLn + Ln-1 with the initial values, L0 = k, L1 = 2 when n and k are both positive.

1.
S.
Falcon
,
Int. J. Contemp. Math. Sciences
6
(
21
),
1039
1050
(
2011
).
2.
S.
Falcon
,
Applied Mathematics
3
(
10
),
1202
1206
(
2012
).
3.
Y.K.
Panwar
,
G.P.S.
Rathore
,
R.
Chawla
,
Global Journal of Mathematical Analysis
2
(
3
),
115
119
(
2014
).
4.
Z.
Cerin
, “
On Sums of Odd and Even Terms of the Lucas Sequence
,”, in
Congressus Numerantium-2009
,
Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications
194
, edited by
W. A.
Webb
, pp.
103
107
.
5.
J.
Deepika
,
American Journal of Mathematical Analysis
2
(
3
),
33
35
(
2014
).
6.
C. K.
Ho
,
J. Y.
Sia
and
C. Y.
Chong
, “
On k-Lucas Sequences
”, in
Quantitative Sciences and Its Applications-2014
,
AIP Conference Proceedings
1635
, edited by
I.
Haslinda
 et al (
American Institute of Physics
,
Melville, NY
,
2014
), pp.
425
429
.
7.
C. K.
Ho
and
C. Y.
Chong
, “
Odd and Even Sums of Generalized Fibonacci Numbers by Matrix Methods
”, in
Mathematical Sciences-2013
,
AIP Conference Proceedings
1602
, edited by
W.Z.W.
Zawiah
 et al (
American Institute of Physics
,
Melville, NY
,
2014
), pp.
1026
1030
.
This content is only available via PDF.
You do not currently have access to this content.