A three dimensional boundary value problem for equations of Keldysh type involving lower order terms is studied. This problem is not correctly set, since it has an infinite-dimensional co-kernel. In order to avoid the infinite number of necessary conditions for classical solvability a notion for generalized solution is given. For small power of degeneration m ∈ (0, 1) results of existence and uniqueness of such solution are obtained, without supposing any vanishing conditions on parabolic part of the boundary for first order terms. This result corresponds with so called Protter condition for 3-D problems originally formulated by M. Protter for Tricomi type equations.
REFERENCES
1.
S. A.
Aldashev
, A criterion for the existence of eigenfunctions of the Darboux-Protter spectral problem for degenerating multidimentional hyperbolic equations
, Differ. Equations
41
, 833
–839
(2005
).2.
A.
Aziz
, M.
Schneider
, Frankl-Morawetz problems in R3
, SIAM J. Math. Anal.
10
, 913
–921
(1979
).3.
J.
Barros-Neto
, I.
Gelfand
, Fundamential solutions for the Tricomi operator
, Duke Math. J.
128
, No. 1
, 119
–140
(2005
).4.
S.
Čanić
, B.
Keyfitz
, A smooth solution for a Keldysh type equation
, Commun. Partial Differ. Equations
21
, No. 1-2
, 319
–340
(1996
).5.
S.
Chen
, A mixed equation of Tricomi-Keldysh type
, J. Hyperbolic Differ. Equ.
9
, No. 3
, 545
–553
(2012
).6.
L.
Dechevski
, N.
Popivanov
, Morawetz-Protter 3D problem for quasilinear equations of elliptic-hyperbolic type. Critical and supercritical cases
, Compt. Rend. Acad. Bulg. Sci.
61
, No 12
, 1501
–1508
(2008
).7.
P. R.
Garabedian
, Partial differential equations with more than two variables in the complex domain
, J. Math. Mech.
9
, 241
–271
(1960
).8.
S.
Gellerstedt
, Sur une équation linéaire aux dérivées partielles de type mixte
, Ark. Mat. Astron. Fys. A
25
, No. 29
, 1
–23
(1937
).9.
T. D.
Hristov
, N. I.
Popivanov
, M.
Schneider
, Generalized Solutions to Protter problems for 3-D Keldysh type equations, AIP Conference Proceedings
1637
, American Institute of Physics
, New York
, 2014
, pp. 422
–430
.10.
T. D.
Hristov
, Singular Solutions to Protter problem for Keldysh type equations, AIP Conference Proceedings
1631
, American Institute of Physics
, New York
, 2014
, pp. 255
–262
.11.
T.
Hristov
, N.
Popivanov
, Singular solutions to Protter’s problem for a class of 3-D weakly hyperbolic equations
, Compt. Rend. Acad. Bulg. Sci.
60
, No 7
, 719
–724
(2007
).12.
T. D.
Hristov
, N. I.
Popivanov
, M.
Schneider
, On uniqueness of quasi-regular solutions to Protter problem for Keldish type equations, AIP Conference Proceedings
1570
, American Institute of Physics
, New York
, 2013
, pp. 321
–326
.13.
T.
Hristov
, N.
Popivanov
and M.
Schneider
, On the Uniqueness of Generalized and Quasi-regular Solutions for Equations of Mixed Type in R3
, Sib. Adv. Math.
21
, No. 4
, 262
–273
(2011
).14.
Khe Kan
Cher
, On Nontrivial solutions of some homogeneous boundary value problems for the multidimensional hyperbolic Euler-Poisson-Darboux equation in an unbounded domain
, Differ. Equations
34
, No. 1
, 139
–142
(1998
).15.
B.
Keyfitz
, A.
Tesdall
, K.
Payne
, N.
Popivanov
, The sonic line as a free boundary
, Q. Appl. Math.
71
, No. 1
, 119
–133
(2013
).16.
D.
Lupo
, D.
Monticelli
, K.
Payne
, On the Dirichlet problem of mixed type for lower hybrid waves in axisymmetric cold plasmas
, Arch. Ration. Mech. Anal.
217
, No. 1
, 37
–69
(2015
).17.
D.
Lupo
, C.
Morawetz
, K.
Payne
, On closed boundary value problems for equations of mixed elliptic-hyperbolic type
, Commun. Pure Appl. Math.
60
, No. 9
, 1319
–1348
(2007
).18.
D.
Lupo
, K.
Payne
, N.
Popivanov
, Nonexistence of nontrivial solutions for supercritical equations of mixed elliptic-hyperbolic type, “Progres in Non-Linear Differential Equations and Their Applications
” 66
Birkhauser, Basel
, 371
–390
(2006
).19.
D.
Lupo
, K.
Payne
, N.
Popivanov
, On the degenerate hyperbolic Goursat problem for linear and nonlinear equations of Tricomi type
, Nonlinear Analysis
108
, 29
–56
(2014
).20.
E. I.
Moiseev
, Approximation of the classical solution of a Darboux problem by smooth solutions
, Differ. Equations
, 20
(1984
), 59
–74
.21.
T. E.
Moiseev
, On the solvability of the Tricomi problem for the Lavrent’ev-Bitsadze equation with mixed boundary conditions
, Differ. Equations
45
, No. 10
, 1547
–1549
(2009
).22.
C.
Morawetz
, Mixed equations and transonicflow
, J. Hyperbolic Differ. Equ.
1
, No. 1
, 1
–26
(2004
).23.
A. M.
Nakhushev
, Problems with shifts for partial differential equations
, Nauka
, Moscow
2006
[in Russian].24.
A. M.
Nakhushev
, On the theory of linear boundary value problem for hyperbolic and mixed type equations
, D.Sc. Theses
, Novosibirsk
, 1971
[in Russian].25.
A.
Nikolov
, Integral representation of singular solutions to BVP for the wave equation, AIP Conference Proceedings
1637
, American Institute of Physics
, New York
, 2014
, pp. 1249
–1253
.26.
O. A.
Oleinik
, E. V.
Radkevič
, Second Order Equations with Nonnegative Characteristic Form
, Amer. Math. Soc., Providence
, RI
, 1973
(translated from Russian).27.
T. H.
Otway
, The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type
, Series: Lecture Notes in Mathematics Vol. 2043
, Springer-Verlag Berlin Heidelberg
, 2012
.28.
N.
Popivanov
, T.
Popov
, R.
Scherer
, Asymptotic expansions of singular solutions for (3+1)-D Protter problems
, J. Math. Anal. Appl.
331
,1093
–1112
(2007
).29.
N.
Popivanov
, M.
Schneider
, The Darboux problems in R3 for a class of degenerating hyperbolic equations
, J. Math. Anal Appl.
175
, No. 2
, 537
–579
(1993
).30.
M.
Protter
, New boundary value problem for the wave equation and equations of mixed type
, J. Rat. Mech. Anal.
3
, 435
–446
(1954
).31.
J.
Rassias
, Tricomi-Protter problem of n D mixed type equations
, Int. J. Appl. Math. Stat.
8
, No. M07
, 76
–86
(2007
).32.
33.
S. A.
Tersenov
, On the theory of hyperbolic equations with data on a line of degeneracy
, Sib. Mat. Zh.
2
, 913
–935
(1961
). [in Russian]
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.