A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

1.
F.
Nelson
,
O.
Anisimov
, and
N.
Shiklomanov
,
“bibfield journal “bibinfo journal
Natural Hazards
“ “textbf “bibinfo
volume
26
,
“ “unskip“ “bibinfo pages
203
225
(“bibinfo year
2002
).
2.
Y.
Zhang
,
W.
Chen
, and
J.
Cihlar
,
“bibfield journal “bibinfo journal
Journal of Geophysical Research
“ “textbf “bibinfo
volume
108
,
“ “unskip“ “bibinfo pages
ACL5–1
ACL5–16
(
“bibinfo year
2003
).
3.
M.
Filimonov
and
N.
Vaganova
, “
Simulation of thermal fields in the permafrost with seasonal cooling devices
,” in
9th International Pipeline Conference(IPC 2012)
,
ASME Conference Proceedings
, Vol.
4
(
1999
), pp.
133
141
.
4.
M.
Filimonov
and
N.
Vaganova
,
Academic Journal of Science
3
,
121
128
(
2014
).
5.
M.
Filimonov
and
N.
Vaganova
,
“bibfield journal “bibinfo journal
Applied Mathematical Sciences
“ “textbf “bibinfo
volume
7
,
“ “unskip“ “bibinfo pages
7151
7160
(
“bibinfo year
2013
).
6.
N.
Vaganova
and
M.
Filimonov
,
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
13
,
37
42
(
2013
).
7.
A.
Samarsky
and
P.
Vabishchevich
,
Computational Heat Transfer, Volume 2, The Finite Difference Methodology
(
Wiley
,
Chichester
,
1995
).
8.
A.
Samarsky
and
B.
Moiseenko
,
Computational Mathematics and Mathematical Physics
5
,
816
827
(
1965
).
9.
N.
Vaganova
,
Proceedings of the Steklov Institute of Mathematics
S1
,
S260
S272
(
2008
).
10.
V.
Bashurov
,
N.
Vaganova
, and
M.
Filimonov
,
Journal of Computational technologies
16
,
3
18
(
2011
).
11.
M.
Filimonov
and
N.
Vaganova
, “Simulation and numerical investigation of temperature fields in an open geothermal system,”
in “emph “bibinfo booktitle
Finite Difference Methods,Theory and Applications, Lecture Notes in Computer Science 9045
(
Springer International Publishing
,
2015
), pp.
393
399
.
12.
N.
Vaganova
, “
Mathematical model of testing of pipeline integrity by thermal fields
,” in
Applications of Mathematics in Engineering and Economics (AMEE’14)
,
AIP Conference Proceedings
, Vol.
1631
(
AIP Publishing
,
New York
,
2014
), pp.
37
41
.
13.
N.
Vaganova
,
Proceedings of the Steklov Institute of Mathematics
S2
,
S182
S192
(
2003
).
14.
T.
Zhang
,
R.
Barry
,
K.
Knowles
,
J.
Heginbottom
, and
J.
Brown
,
“bibfield journal “bibinfo journal
Polar Geography
“ “textbf “bibinfo
volume
31
,
“ “unskip“ “bibinfo pages
47
68
(
“bibinfo year
2008
).
This content is only available via PDF.
You do not currently have access to this content.