Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.

1.
X.
Zhang
,
L.
Alexander
,
G. C.
Hegerl
,
P.
Jones
,
A. K.
Tank
.
T. C.
Peterson
,
B.
Trewin
and
F. W.
Zwiers
,
WIREs Clim Change
, doi: (
2011
).
2.
L.
Politano
, “
Extreme Temperature Events in the Mediterranean
”, Master’s Thesis,
University of Bern
,
2008
.
3.
A. H.
Encinas
,
A. Q.
Dios
,
L. H.
Encinas
and
V. G.
Martinez
,
International Journal of Applied Physics and Mathematics
,
3
(
3
),
515
524
(
2013
).
4.
G.
Choi
,
D.
Collins
,
G.
Ren
,
B.
Trewin
,
M.
Baldi
,
Y.
Fukuda
,
M.
Afzaal
,
T.
Pianmana
,
P.
Gomboluudev
,
P. T. T.
Huong
,
N.
Lias
,
W.T.
Kwon
,
K. O.
Boo
,
Y. M.
Cha
and
Y.
Zhou
,
International Journal of Climatology
,
29
,
1906
1925
(
2009
).
5.
X.
Zhang
and
F.
Yang
,
World Wide Web “RClimDex (1.0) User Manual
”, http://etccdi.pacificclimate.org/RClimDex/RClimDexUserManual.doc (
2009
).
6.
Centre for Global Sustainability
,
Disaster Risk Management for Sustainable Development (DRM-SD) An Integrated Approach
,
Malaysia
:
Universiti Sains Malaysia
,
2013
.
7.
F.T.
Tanggang
,
L.
Juneng
and
S.
Ahmad
,
Theor. Appl. Climatol
,
89
,
127
141
(
2007
).
8.
H.
Hasan
,
N. F. Ahmad
Radi
and
S.
Kassim
(
2012
).
Modeling Extreme Temperature Using Generalized Extreme Value (GEV) Distribution: A Case Study of Penang
.
World Congress on Engineering
1
, 2012, pp.
181
186
.
9.
H.
Hasan
,
N.
Salam
and
S.
Kassim
.
Modeling Extreme Temperature Using Generalized Extreme Value (GEV) Distribution: A Case Study in Malaysia
,
AIP Conf. Proc
1522
,
2013
, pp.
1195
1203
.
10.
H.
Hasan
,
N.
Salam
, and
M. B.
Adam
,
Modeling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution
.
World Academy of Science and Technology
78
,
2013
, pp.
435
441
.
11.
Centre for Hazards and Risk Research at Columbia University, World Wide Web “Malaysia: Natural Disaster Profile”
, http://www.ldeo.columbia.edu/chrr/research/profiles/pdfs/malaysia_profile1.pdf (
2005
).
This content is only available via PDF.
You do not currently have access to this content.