For a graph G = (V (G), E(G)), an edge labeling function f: E(G) → {0,1,…, k − 1} where k is an integer, 2 ≤ k ≤ |E(G)|, induces a vertex labeling function f *:V(G) → {0,1,…, k − 1} such that f *(v) is the product of the labels of the edges incident to v (mod k). This function f is called k-total edge product cordial (or simply k-TEPC) labeling of G if |(vf (i) + ef (i)) − (vf (j) + ef (j))| ≤ 1 for all i, j ∈ {0,1,…., k − 1}. In this paper, 3-total edge product cordial labeling for star related graphs is determined.
REFERENCES
1.
A.
Azaizeh
, R.
Hasni
, A.
Ahmad
and G.C
Lau
, Far East J Math Sciences
, accepted for publication
.2.
A.
Azaizeh
, R.
Hasni
, G.C.
Lau
and A.
Ahmad
, submitted
.3.
A.
Azaizeh
, R.
Hasni
and G.C.
Lau
, submitted
.4.
5.
6.
M.
Sundaram
, R.
Ponraj
and S.
Somasundaram
, Bulletin of Pure and Applied Science (Mathematics and Statistics)
23E
, 155
–163
(2004
).7.
S. K.
Vaidya
and C. M.
Barasara
, Journal of Mathematical and Computational Science
2
(5
), 1436
–1450
(2012
).8.
9.
S. K.
Vaidya
, N. A.
Dani
, K. K.
Kanani
and P. L.
Vihol
, International Mathematical Forum
4
(31
), 1543
–1553
(2009
).10.
D. B.
West
, Introduction to Graph Theory
, 2nd Edition, Prentice-Hall
, New Jersey, USA
, (2003
).
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.