For a graph G = (V (G), E(G)), an edge labeling function f: E(G) → {0,1,…, k − 1} where k is an integer, 2 ≤ k ≤ |E(G)|, induces a vertex labeling function f *:V(G) → {0,1,…, k − 1} such that f *(v) is the product of the labels of the edges incident to v (mod k). This function f is called k-total edge product cordial (or simply k-TEPC) labeling of G if |(vf (i) + ef (i)) − (vf (j) + ef (j))| ≤ 1 for all i, j ∈ {0,1,…., k − 1}. In this paper, 3-total edge product cordial labeling for star related graphs is determined.

1.
A.
Azaizeh
,
R.
Hasni
,
A.
Ahmad
and
G.C
Lau
,
Far East J Math Sciences
,
accepted for publication
.
2.
A.
Azaizeh
,
R.
Hasni
,
G.C.
Lau
and
A.
Ahmad
,
submitted
.
3.
A.
Azaizeh
,
R.
Hasni
and
G.C.
Lau
,
submitted
.
4.
I.
Cahit
,
Cordial Graphs
,
Ars Combinatoria
23
,
201
207
(
1987
).
5.
J.A.
Gallian
,
Electronic J. Combin.
16
, #
DS6
,
1
308
(
2013
).
6.
M.
Sundaram
,
R.
Ponraj
and
S.
Somasundaram
,
Bulletin of Pure and Applied Science (Mathematics and Statistics)
23E
,
155
163
(
2004
).
7.
S. K.
Vaidya
and
C. M.
Barasara
,
Journal of Mathematical and Computational Science
2
(
5
),
1436
1450
(
2012
).
8.
S. K.
Vaidya
and
C. M.
Barasara
,
Malaya Journal of Matematik
3
(
1
),
55
63
(
2013
).
9.
S. K.
Vaidya
,
N. A.
Dani
,
K. K.
Kanani
and
P. L.
Vihol
,
International Mathematical Forum
4
(
31
),
1543
1553
(
2009
).
10.
D. B.
West
,
Introduction to Graph Theory
, 2nd Edition,
Prentice-Hall
,
New Jersey, USA
, (
2003
).
This content is only available via PDF.
You do not currently have access to this content.