A class of sea-air oscillator of the El Nino-Southern Oscillation (ENSO) mechanism is considered. Variational iteration method (VIM) is applied to generate approximate solution to the system. Numerical VIM solutions obtained are then compared with results from the analytical solution and the Runge-Kutta-Fehlberg method of fourth-fifth order (RKF45).
REFERENCES
1.
H.F.
Diaz
, V.
Markgraf
. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation
. New York
: Cambridge University Press
, 1992
.2.
S.G.H.
Philander
. El Niño, La Niña, and the Southern Oscillation
., San Diego
: Academic Press
, 1990
.3.
A.
Saunders
and M.
Ghil
. A Boolean delay equations model of ENSO variability
. Physica D
2801
, 1
–25
(2001
).4.
J.
Can
, J.
Gonzlez
and J.
Valds
. Precipitation in the Colorado River Basinand its low frequency associations with PDO and ENSO signals
. J Hydro
333
(2
), 252
–264
(2007
).5.
T.C.
Piechota
and J.A.
Dracup
. Drought and regional hydrologic variation in the United States: associations with the El Niño
, Water Resour. Res
32
, 1359
–1373
(1996
).6.
A. G.
Grottoli
and C. M.
Eakin
. A review of modern coral δ18O and Δ14Cproxy records
. Earth-Science Rev
81
, 1
: 67
–91
(2007
).7.
J.
Chandimala
and L.
Zubair
. Predictability of stream flow and rainfall based onENSO for water resources management in Sri Lanka
. J Hydro
335
(3
), 303
–312
(2007
).8.
J.
Schngart
and W. J.
Junk
. Forecasting the flood-pulse in Central Amazonia by ENSO-indices
. J Hydro
335
(1
), 124
–132
, (2007
).9.
M. L. H.
Mabaso
, I.
Kleinschmidt
, B.
Sharp
and T.
Smith
. El Niño Southern Oscillation (ENSO) and annual malaria incidence in Southern Africa
. Trans Royal Society Trop Med Hygiene
101
(4
), 326
–330
(2007
).10.
J. Q.
Mo
, W. T.
Lin
and H.
Wang
. Asymptotic solution of a sea-air oscillator for ENSO mechanism
. Chi Phys
16
(3
), 578
–581
(2007
).11.
J. Q.
Mo
, H.
Wang
, W. T.
Lin
and Y. H.
Lin
. Variational iteration methodfor solving the mechanism of the Equatorial Eastern Pacific El Niño-SouthernOscillation
. Chi Phys
15
(4
), 671
–675
, (2006
).12.
P.
Bogacki
and L. F.
Shampine
. An efficient Runge-Kutta (4,5) pair
. Computer Maths Appl
32
(6
), 15
–28
(1996
).13.
A. M.
Antoni
, G.
Xavier
and M. B.
Josep
. On the implementation of the Rung-Kutta-Fehlberg algorithm to integrate intrinsic reaction coordinate paths
. Chem Phys Lett
432
, 375
–382
, (2006
).
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.