A set of sample consist of pure ZnO and Cu-doped ZnO film were grown on fused-quartz substrates using pulsed laser deposition (PLD) technique. Here, we report room temperature spectroscopic ellipsometry analysis (covering energy range of 0.5 to 6.3 eV) of pure ZnO film and Cu doped ZnO film at 8 in at. %. The thickness of pure ZnO and Cu-doped ZnO film using in this study is about 350 nm. To extract the dielectric function of ZnO thin film, multilayer modeling is performed which takes into account reflections at each interface through Fresnel coefficients. This method based on Drude-Lorentz models that connect with Kramers-Kronig relations. The best fitting of Ψ (amplitude ratio) and Δ (phase difference) taken by SE measurement are obtained reasonably well by mean the universal fitting of three different photon incident angles. The imaginary part of dielectric function (ε2) show the broad peak at around 3.3 eV assigned as combination of optical band energy edge with excitonic states. The exitonic states could not be observed clearly in this stage. The evolution of extracted dielectric function is observable by introducing 8% Cu as indicated by decreasing of excitonic intensity. This result indicates the screening of excitonic state. This study will bring us to have a good undestanding for the role of Cu impurities for ZnO thin films.

1.
A.
Janotti
, and
C. G. V.
de Walle
,
Rep. Prog. Phys.
72
(
1265012
),
1
29
(
2009
).
2.
D. L.
Lide
,
Handbook of Chemistry and Physics
, 8th. (
CRC Press
,
Florida
,
2004
).
3.
A. R.
Hutson
,
Phys. Rev. Lett.
4
(
10
) (
1960
).
4.
J. P.
Perdew
,
Electronic Structure of Solids
(
1991
).
5.
P.
Ivanov
,
Phys. Rev. Lett.
101
(
031118
) (
2012
).
6.
T.
Dietl
, presented at
the MRS Symp. Proc. Sci. Tech
., (
2002
).
7.
S. T.
Tan
,
B. J.
Chen
,
X. W.
Sun
, and
W. J.
Fan
,
J. of Appl. Phys.
(
98
) (
2005
).
8.
C.
Jagadish
, and
S. J.
Pearton
,
Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications
. (
Elsevier Science
,
2006
).
9.
R.
Ramesh
, and
N. A.
Spaldin
,
Nature Material
6
(
2007
).
10.
T. S.
Herng
,
M. F.
Wong
,
D. C.
Qi
,
J. B.
Yi
,
A.
Kumar
,
A.
Huang
,
F. C.
Kartawidjaja
,
S.
Smadic
,
P.
Abbamonte
,
C.
Sánchez-Hanke
,
S.
Shannigrahi
,
J. M.
Xue
,
J.
Wang
,
Y. P.
Feng
,
A.
Rusydi
,
K.
Zeng
, and
J.
Ding
,
Adv. Matter.
23
,
1
6
(
2011
).
11.
S.
Bai
,
Adv. Funct. Mater.
21
,
4464
4469
(
2011
).
12.
K.
Kihara
, and
G.
Donnay
,
Canadian Min.
23
,
647
654
(
1985
).
13.
S. J.
Pearton
,
Prog. Mat. Sci.
50
,
293
340
(
2005
).
14.
C. W.
Litton
,
D. C.
Reynolds
, and
T. C.
Collins
,
Zinc Oxide Materials For Electronic and Optoelectronic Device Applications
. (
John Wiley & Sons Ltd.
,
United Kingdom
,
2011
).
15.
I.
Egri
,
Phys. Rev. B
32
(
4
),
2631
2633
(
1985
).
16.
A.
Yamamoto
,
T.
Kido
,
T.
Goto
,
Y.
Chen
,
T.
Yao
,
Solid State Communications
122
,
29
32
(
2002
).
17.
J. G.
Gay
,
Phys. Rev. B
4
(
8
) (
1971
).
18.
A.
Kuzmenko
,
Guide to refFIT Software to Fit Optical Spectra.
(
2012
).
19.
A.
Schleife
,
Phys. Rev. B
80
(
2009
).
20.
H.
Yoshikawa
, and
S.
Adachi
,
Jpn. J. Appl. Phys.
36
(
10
),
6237
6243
(
1997
).
21.
D. E.
Aspnes
,
Handbook of Optical Constants of Solids Ed. E.
(
Academic Press
,
New York
,
1998
).
22.
Y.
Darma
,
T. S.
Herng
,
R.
Marlina
,
R.
Fauziah
,
J.
Ding
, and
A.
Rusydi
,
App. Phys. Lett.
104
(
081922
) (
2014
).
23.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
. (
John Wiley & Sons Ltd.
,
United Kingdom
,
2003
).
24.
L. S.
Amato
,
Recombination Dynamic in Zinc Oxide
,
Universit degli
,
2010
.
This content is only available via PDF.
You do not currently have access to this content.