Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.

1.
Avdeev
,
D.
,
Three-dimensional electromagnetic modelling and inversion from theory to application
,
Surv. Geophys.
,
26
,
767
799
(
2005
).
2.
Börner
,
U. R.
,
Numerical modelling in geo-electromagnetics: advances and challenges
,
Surv. Geophys.
,
31
,
225
245
(
2010
).
3.
Jin
,
J. M.
,
The finite element method in electromagnetics
,
John Wiley and Sons, Inc
. (
1993
).
4.
Farquharson
,
C. G.
, and
Miensopust
,
M. P.
,
Three-dimensional finite-element modeling of magnetotelluric data with a divergence correction
,
75
,
699
710
(
2011
).
5.
Zhdanov
,
M. S.
,
Varentsov
,
I. M.
,
Weaver
,
J. T.
,
Golubev
,
N. G.
, and
Krylov
,
V. A.
,
Methods for modeling electromagnetic fields Results from COMMEMI –the international project on the comparison of modeling methods for electromagnetic induction
,
J. of Applied Geophysics
,
37
,
133
271
(
1997
)
6.
Prihantoro
,
R.
,
D.
Sutarno
, and
Nurhasan
,
Numerical Solution of 3-D Magnetotelluric Using Vector Finite Element Method
.
Submitted for ICMNS
(
2014
).
7.
Yamashita
M.
,
Hallof
P. G.
, and
Pelton
,
W. H
,
CSAMT case historis with a multichannel CSAMT system and near field data correction
,
55th SEG Annual Convention
,
276
278
(
1985
).
8.
Bartel
,
L. C.
, and
Jacobson
,
R. D.
,
Results of a controlled source audiofrequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii
,
Geophysics
,
52
,
665
677
(
1987
)
9.
Kaufmann
,
A. A.
and
Keller
,
G. V.
,
Frequency and Transient Sounding
,
Elsevier
(
1983
)
10.
Ward
,
S. H.
,
dan Hohmann
,
G. W.
 Electromagnetic Theory for Geophysical Applications, in
Nabighian
,
M. N.
Ed.,
Electromagnetic Methods, Theory and Practice
vol.
1
,
Society of Exploration Geophysicist
,
131
311
(
1988
)
11.
Singh
,
N. P.
, and
Mogi
,
T.
,
EMDPLER: A F77 program for modeling the EM response of dipolar sources over the non magnetic layer earth model
,
Computer and Geosciences
,
36
,
430
440
(
2010
)
12.
Stoyer
,
C. H.
, and
Greenfield
,
R. J.
,
Numerical solutions of the response of a two dimensional earth to an oscillating magnetic dipole source
,
Geophysics
,
41
,
519
530
(
1976
).
13.
Unsworth
,
M. J.
,
Travis
,
B. J.
,
Chave
,
A. D.
,
Electromagnetic Induction by a Finite Electric Dipole Source Over a 2D Earth
,
Geophysics
,
58
:
2
,
198
214
(
1992
)
14.
Mitsuhata
,
Y.
,
2-D Electromagnetic modeling by finite-element method with a dipole source and topography
,
Geophysics
,
65
,
465
475
(
2000
).
15.
Li
,
Y.
,
Key
,
K.
,
2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm
,
Geophysics
,
72
,
WA51
WA62
(
2007
)
16.
Streich
,
R.
,
3D finite difference frequency modeling of controlled source electromagnetic data: direct solution and optimization for high accuracy
,
Geophysics
74
,
95
105
(
2009
).
17.
Lee
,
K. H.
, and
Morrison
,
H. F.
,
A numerical solution for electromagnetic scattering by a two dimensional inhomogenity
,
Geophysics
, Vol
50
, P
1163
1165
(
1985
).
18.
Boschetto
,
N. B.
,
Hohmann
,
G. W.
,
Controlled Source Audiofrequency Magnetotelluric Responses of Three Dimensional Bodies
,
Geophysics
,
56
:
2
, P
255
265
(
1991
).
19.
Newman
,
G. A.
,
Hohmann
,
G. W.
, and
Anderson
,
W. L.
,
Transient electromagnetic response of a three-dimensional body in a layered earth
:
Geophysics
,
51
,
1608
1627
(
1986
).
20.
Mohammad
,
I. H.
,
W.
Srigutomo
,
D.
Sutarno
,
P.
Soemintadiredja
,
The Modeling of 2D Controlled Source Audio Mangnetotelluric (CSAMT) Responses Using Finite Element Method
,
Journal of Electromagnetic Analysis and Applications
,
4
:
7
,
294
304
(
2012
).
21.
Hohmann
,
W. G.
, Numerical Modeling for Electromagnetic Methods of Geophysics, in
Nabighian
,
M. N.
Ed.,
Electromagnetic Methods, Theory and Practice
vol.
1
,
Society of Exploration Geophysicist
, page
131
311
(
2009
).
22.
Mohammad
,
I. H.
,
W.
Srigutomo
,
D.
Sutarno
,
P.
Soemintadiredja
,
Interpretation of 1D Vector Controlled-Source Audio-Magnetotelluric (CSAMT) Data Using Full Solution Modeling
,
Journal of Mathematical and Fundamental Sciences
,
45
:
2
,
172
188
(
2013
).
23.
Routh
,
S. P.
, and
Oldenburg
,
D. W.
,
Inversion of Controlled Source Audio Frequency Magnetotelluric Data for Horizontally Layered Earth
,
Geophysics
,
64
,
1689
1697
(
1999
).
24.
Chave
,
A. D.
,
Thomson
,
D. J.
,
Some comments on magnetotelluric response function estimation
:
J. Geophys. Res.
,
94
,
14215
14225
(
1989
).
25.
Sutarno
,
D.
, and
Vozoff
,
K.
,
Robust M-estimation of magnetotelluric impedance tensors
:
Expl. Geophys.
,
20
,
283
398
(
1989
).
26.
Sutarno
,
D.
, and
Vozoff
,
K.
,
Phase-smoothed robust M-estimation of magnetotelluric impedance functions
:
Geophysics
,
56
,
1999
2007
(
1991
).
27.
Sutarno
,
D.
and
Vozoff
,
K.
,
An application of regression M-estimation with the Hilbert transform to magnetotelluric data processing
,
Explor. Geophys.
22
,
383
390
(
1991
).
28.
Jones
,
A. G.
,
Chave
,
A. D.
Egbert
,
G. D.
,
Auld
,
D.
and
Bahr
,
K.
,
A comparison of techniques for magnetotelluric respon estimation
:
J. Geophys. Res.
,
94
,
14201
14123
(
1989
).
29.
Huber
,
P. J.
,
Robust statistics
:
John Wiley and Sons, Inc
. (
1981
)
30.
Thomson
,
D.J.
,
Spectrum estimation techniques for characterization and development of WT4 waveguide I
:
Bell Syst. Tech. J.
,
56
,
1769
1815
(
1977
).
31.
Sutarno
,
D.
,
Adaptive Robust M-estimation of Magnetotelluric Impedance Functions
,
Proc. IAGA-IASPEI Joint Scientific Assembly
,
Hanoi, Vietnam
(
1977
).
32.
Schill
,
E.
,
J.
Geiermann
, and
J.
Kümmritz
,
2-D Magnetotellurics and Gravity at the Geothermal Site at Soultz-sous-Forêts
,
Proceedings World Geothermal Congress
,
Bali
(
2010
).
33.
Boehl
,
J. E.
,
Bostick
,
F. X.
, and
Smith
,
H. W.
, An application of the Hilbert transform to the magnetotelluric method:
Tech. Rep. Electr. Geophys. Res. Lab.
,
University of Texas
,
Austin
(
1977
).
34.
Yee
,
E.
, and
Paulson
,
K. V.
,
Concerning dispersion relations for the magnetotelluric impedance tensor
:
Geophys. J.
,
95
,
549
559
(
1988
).
35.
Sutarno
,
D.
,
Constrained robust estimation of magnetotelluric impedance functions based on a bounded-influence regression M-estimator and the Hilbert transform
,
Nonlinear Processes in Geophysics
,
15
:
2
,
287
293
(
2008
).
36.
Sutarno
,
D.
,
Robust Magnetotelluric Impedance Estimation
,
American Institute of Physics Proceeding
,
1325
,
24
27
(
2010
).
37.
Zonge
,
K. L.
, and
Hughes
,
L. J.
, Controlled source audio-frequency magnetotellurics, in
Nabighian
,
M. N.
ed.,
Electromagnetic methods in applied geophysics
, Vol.
2
, B,
Society of Exploration Geophysicists
,
Tulsa
,
713
809
(
1991
).
38.
Supriadi
,
Sutarno
,
D.
,
Hordt
,
A.
, Controlled-Source Audio Magnetotellurics (CSAMT) Surveys at Merapi Volcano in “
Decade Volcanoes under Investigation
”,
Zschau
,
J.
and
Westerhaus
,
M.
, (eds).
Dt. Geophys. Gesellschaft
,
Germany
(
2000
).
39.
Sutarno
,
D.
and
I.
Fatrio
,
Robust M-estimation of CSAMT impedance functions
,
Indonesian Journal of Physics
,
18
:
3
,
81
85
(
2007
).
40.
Sutarno
,
D.
and
Fatrio
,
I.
,
An application of robust M-estimation to CSAMT data processing
,
Proc. of The 117-th SEGJ Conference
,
263
266
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.