This research is about numerical simulation using a computational method which study on stress amplification induced by crack interaction in human femur bone. Cracks in human femur bone usually occur because of large load or stress applied on it. Usually, the fracture takes longer time to heal itself. At present, the crack interaction is still not well understood due to bone complexity. Thus, brittle fracture behavior of bone may be underestimated and inaccurate. This study aims to investigate the geometrical effect of double co-planar edge cracks on stress intensity factor (K) in femur bone. This research focuses to analyze the amplification effect on the fracture behavior of double co-planar edge cracks, where numerical model is developed using computational method. The concept of fracture mechanics and finite element method (FEM) are used to solve the interacting cracks problems using linear elastic fracture mechanics (LEFM) theory. As a result, this study has shown the identification of the crack interaction limit (CIL) and crack unification limit (CUL) exist in the human femur bone model developed. In future research, several improvements will be made such as varying the load, applying thickness on the model and also use different theory or method in calculating the stress intensity factor (K).

1.
A.
Carpinteri
,
R.
Brighenti
and
S.
Vantadori
,
Engineering Fracture Mechanics
71
,
485
499
(
2004
).
2.
B.
Gross
,
J. E.
Srawley
and
W. F.
Brown
 Jr
, “
Stress-intensity Factors for a Single-edge-notch Tension Specimen by Boundary Collocation of a Stress Function
,” (
1964
).
3.
Huang
,
B. W.
,
Huang
,
M. Y.
,
Tseng
,
J. G.
,
Chang
,
C. H.
,
Wang
,
F. S.
,
Lin
,
A. D.
and
Tsai
,
Y. C.
,
Dynamic Characteristics of a Hollow Femur
9
,
723
726
(
2012
).
4.
J. H.
Kuang
and
L. S.
Chen
,
Engineering Fracture Mechanics
46
,
735
741
(
1993
).
5.
J. J.
Kruzic
,
J. A.
Scott
,
R. K.
Nalla
,
R. O.
Ritchie
, Abdullah and Shahrum,
Journal of Biomechanics
39
,
968
972
(
2006
).
6.
M.
Doblare
,
J. M.
Garcia
and
M. J.
Gomez
,
Engineering Fracture Mechanics
71
,
1809
1840
(
2004
).
7.
M. R.
Ayatollahi
and
R.
Hashemi
,
Composite Structures
78
,
602
609
(
2005
).
8.
M. S.
Hasan
, in
Biomedical Engineering Conference
,
Proceedings of the 1996 Fifteenth Southern IEEE Xplore
,
494
496
(
1996
).
9.
M. B.
Shaha
,
J. L.
Ferracaneb
and
J. J.
Kruzica
,
Dental Materials
25
,
760
770
(
2009
).
10.
M.
Bessho
,
I.
Ohnishi
,
T.
Matsumoto
,
J. M. S.
Ohashi
,
K.
Tobita
,
M.
Kaneko
and
K.
Nakamura
,
Bone
45
,
226
231
(
2009
).
11.
P.
Hutar
,
L.
Náhlík
and
Z.
Knésl
,
Procedia Engineering
45
,
653
657
(
2007
).
12.
R.
Daud
,
A. K.
Ariffin
,
S.
Abdullah
and
A. E.
Ismail
,
Meccanica
47
,
1141
1156
(
2012
).
13.
R.
Fedida
,
Z.
Yosibash
,
C.
Milgrom
and
L.
Joskowicz
,
Proceedings of ICCB05-II International Conference on Computational Bioengineering
10
,
85
96
(
2005
).
14.
R.
Hambli
and
E.
Lespessailles
,
Journal of the Mechanical Behavior of Biomedical Materials
17
,
89
106
(
2013
).
15.
R. S.
Barsoum
,
International Journal of Fracture
10
,
603
605
(
1975
).
16.
S.
Benbarek
,
B. A. B.
Bouiadjra
,
B. M. E.
Mokhtar
,
T.
Achour
and
B.
Serier
,
Design and Computation of Modern Engineering Materials
54
,
73
87
(
2014
).
17.
T.
Hao
and
T.
Yifei
,
Procedia Environmental Sciences
10
,
640
646
(
2011
).
18.
X. F.
Hu
and
W. A.
Yao
,
Mechanics Research Communications
48
,
247
256
(
2012
).
19.
Huang
,
Z.
,
Himes
,
J. H.
and
McGovem
,
P. G.
,
American Journal of Epidemiology
144
,
124
134
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.