The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography.

Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.

1.
H. M.
Fritz
,
W.
Kongko
,
A.
Moore
,
B.
McAdoo
,
J.
Goff
,
C.
Harbitz
,
B.
Uslu
,
N.
Kalligeris
,
D.
Suteja
,
K.
Kalsum
,
V.
Trrov
,
A
Gusman
,
H.
Latief
,
E.
Santoso
,
S.
Sujoko
,
D.
Djulkarnaen
,
H.
Sunendar
,
C.
Synolakis
, “
Extreme run up from the 17 July 2006 Java Tsunami
”,
Geophys. Res. Lett.
,
34
,
L12602
, doi: (
2007
)
Boggs, Jr, 1992, Petrology of Sedimentary Rock
.
2.
Lavigne.
F
,
C.
Gomez.
,
M.
Giffo
,
P.
Wassmer
,
C.
Hoebreck
,
D.
Mardiatno
,
J.
Prioyono
&
R.
Paris
,
2007
.
Field Observations of the 17 July 2006 Tsunami in Java
.
Natural Hazards Earth Syst. Sci.
,
7
,
177
183
,
2007
.
3.
R. L.
Folk
, “
Petrology of sedimentary rocks
”,
Hemphill Pu. Co., Austin, Texas
(
1974
)
4.
Blott
and
K.
Pye
GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments
”,
Earth Surface Processes and Landforms
26
,
1237
1248
(
2001
).
5.
B. E.
Benson
,
K. A.
Grimm
and
J. J.
Clague
, “
Tsunami Deposits Beneath Tidal Marshes on Northwestern Vancouver Island, British Columbia
”,
Quatern. Res.
48
,
192
204
(
1997
)
6.
Gelfenbaum
and
B.
Jaffe
, “
Erosion and Sedimentation from the 17 July, 1988 Papua New Guinea Tsunami
”,
Pure Appl. Geophys.
160
,
1969
1999
(
2003
).
Boggs, Jr, 1992, Petrology of Sedimentary Rock
.
7.
S.
Shi
,
A. G.
Dawson
, “
Tsunami Deposit
,
Pure appl. Geophys
, Vol.
157
(
2000
)
875
897
(
2000
).
8.
K.
Minoura
and
S.
Nakaya
, “
Trace of Tsunami Preserved in Inter-tidal Lacustrine and Marsh deposits: Some examples from northeast Japan
”,
J.Geol.
99
,
265
285
(
1991
)
9.
F.
Nanayama
,
K.
Shigeno
,
K.
Satake
,
K.
Shimokawa
,
S.
Koitabashi
,
S.
Miyasaka
and
M.
Ishii
, “
Sedimentary Differences between the 1993 Hokkaido-Nansei-Oki tsunami and the 1959 Miyakojima typhoon at Taisei, Southwestern Hokkaido, Northern Japan
”,
Sediment. Geol.
,
135
(
1-4
),
255
264
(
2000
).
10.
Y.
Nishimura
and
N.
Miyaji
, “
Tsunami deposits from the Southwest Hokkaido Earthquake and the 1640 Hokkaido Komagatake Eruption, Nothern Japan
”,
Pure Appl. Geophys
,
144
,
719
733
(
1995
).
11.
H.
Sato
,
T.
Shimamoto
,
A.
Tsutsumi
and
E.
Kawamoto
, “
Onshore tsunami deposits caused by the 1993 Southwest Hokkaido and 1983 Japan Sea Earthquakes
”,
Pure Appl. Geophys
,
144
,
693
717
(
1995
).
12.
O.
Fujiwara
,
T.
Kamataki
and
T.
Tamura
, “
Grain-size distribution of tsunami deposits reflecting the tsunami waveform-an example from the Holocene drowned valley on the Southern Boso Peninsula, east Japan
”,
The Quatern. Res.
42
,
67
81
(
in Japanese with English abstract
) (
2003
).
13.
J. R.
Goff
,
G. C.
Chague
and
S.
Nichol
, “
Paleotsunami deposits: A New Zealand perspective
”,
Sediment. Geol.
143
,
1
6
(
2001
).
14.
M.
Choowong
,
P.
Charusiri
,
N.
Murakoshi
,
K.
Hisada
,
V.
Daorerk
,
V.
Charoentitirat
,
K.
Jankaew
and
P.
Kanjanapayont
, “
Initial report of tsunami deposits in Phuket and adjacent areas, Thailand induced by the earthquake of Sumatra December 26, 2004
”,
J. Geol. Soc. Japan
111
(
7
),
17
18
.
Chulalongkorn University Tsunami Research Group
(
2005
).
15.
A.
Moore
,
J.
Goff
,
B. G.
McAdoo
,
H. M.
Fritz
,
A.
Gusman
,
N.
Kalligeris
,
K.
Kalsum
,
A.
Sutanto
,
D.
Suteja
, and
C. E.
Synolakis
, “
Sedimentary Deposits from the 17 July 2006 Western Java Tsunami, Indonesia: Use of Grain Size Analyses to Assess Tsunami Flow Depth, Speed, and Traction Carpet Characteristics
”,
Pure Appl. Geopgys
,
168
(
2011
),
1951
1961
, DOI (
2011
)
16.
K.
Minoura
and
S.
Nakaya
, and
M.
Uchida
Tsunami deposits in a lacustrine sequence of the Sanriku coast, northeast, Japan
”,
Sediment. Geol.
89
,
25
31
(
1994
).
17.
A. G.
Dawson
,
S.
Shi
,
S.
Dawson
,
T.
Takahashi
, and
N.
Shuto
, “
Coastal Sedimentation associated with the June 2nd and 3rd, 1994 tsunami in Rajegwesi, Java
.
Quat. Sci. Rev.
15
,
901
912
(
1996
).
18.
K.
Minoura
,
V. G.
Gusiakov
,
A.
Kurbatov
,
S.
Takeuti
,
J. I.
Svendsen
,
S.
Bondevik
, and
T.
Oda
, “
Tsunami sedimentation associated with the 1923 Kamchatka earthquake
”,
Sediment. Geol.
106
,
145
154
.
This content is only available via PDF.
You do not currently have access to this content.