Surface deformation occurred in a volcano is related strongly to the magmatic deformation beneath it. In this work we calculate the surface vertical and horizontal displacements due to hydrostatic pressure change of magma cavity based on point pressure source (Mogi) model and finite spherical source (McTigue) model. We apply the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the deformation.

1.
J.B.
Murray
,
H.
Rymer
, and
C.A.
Locke
, Ground Deformation, Gravity, and Magnetics, in
Sigurdsson
,
H.
 et al. (eds.)
Encyclopedia of volcanoes
,
Academic Press
,
Toronto
,
2000
2.
M.
Lisowski
, Analytical volcano deformation source models, in
Dzurisin
,
D.
(ed.):
Volcano Deformation Geodetic Moitoring Techniques
,
Springer-Praxis Publishing
,
Chichester, UK
,
2000
3.
W.
Menke
,
Geophysical Data Analysis: Discrete Inverse Theory
,
Academic Press
,
New York
,
1984
4.
R. C.
Aster
,
B.
Borchers
,
C.H.
Thurber
,
Parameter Estimation and Inverse Problem
,
Elsevier Academic Press
,
London, UK
,
2005
5.
K.
Mogi
,
Relations Between The Eruptions of Various Volcanoes and The Deformation of The Ground Surfaces Around Them
,
Bull, Earthq. Res. Inst. U. Tokyo
,
36
,
1958
,
99
134
6.
D.F.
McTigue
,
Elastic Stress and Deformation Near A Finite Spherical Magma Body: Resolution of The Point Source Paradox
.
J. Geophys. Res.
,
92
,
12931
12940
,
1980
7.
W.
Srigutomo
, and
S.U.
Agusta
,
Application of Levenberg-Marquardt inversion to microgravity data for investigation of shallow volcanic magma chamber deformation
,
AIP Conf. Proc.
1454
,
2012
, pp.
126
129
; doi:
This content is only available via PDF.
You do not currently have access to this content.