This study discusses fractal analysis on the microscopic structure of the peat soil. The main objective is to investigate the distribution of pores in the rock samples. The results of fractal analysis using the Minkowski-Bouligand method indicates that the SEM images of microscopic structures of peat soil behave as a fractal with dimension value 1.8965. These values confirm that the distribution of pores in the peat soil is very irregular at the microscale levels.
Topics
Fractals
REFERENCES
1.
S.
Xie
, Q.
Cheng
, S.
Zhang
, and K.
Huang
, Assessing microstructures of pyrrhotites in basalts by multifractal analysis
, Nonlin. Processes Geophys.
, 17
, 319
–327
, 2010
.2.
T.
, Noriyoshi
and N.
, Katsuto
, Fractal Analysis And Modeling Of A Two-Dimensional Fracture Network In A Geothermal Reservoir
, Geothermal Resources Council Transaction
, Vol. 19
, October 1995
.3.
Babadagli
Tayfun
and Develi
Kayhan
, Fractal Analysis Of Natural And Synthetic Fracture Surfaces Of Geothermal Reservoir Rocks
, Proceedings World Geothermal Congress 2000
.4.
S.
Fomin
, T.
Hashida
, A.
Shimizu
, K.
Matsuki
and K.
Sakaguchi
, 2003
, Fractal concept in numerical simulation of hydraulic fracturing of the hot dry rock geothermal reservoir
, Wiley InterScience
. DOI:.5.
R.
Jahn
, H.
Truckenbrodt
, A Simple Fractal Analysis Method Of The Surface Roughness
, Journal of Materials Processing Technology
145
(2004
) 40
–45
6.
7.
Albers
Alexanderson
(2008
). “Benoît Mandelbrot: In his own words”. Mathematical people : profiles and interviews
. Wellesley, Mass
: AK Peters
. p. 214
.8.
Mandelbrot
Benoit
1982
. The Fractal Geometry of Nature
. New York
: W. H. Freeman And Company
.9.
Benedetti
, A.
, Fagherazzi
, G.
, Riello
, P.
, Zeng
, Y. W.
, Pinna
, F.
& Signoretto
, M.
(1993
). Fractal properties of a partially crystalline zirconium oxide aerogel
, J. Appl. Cryst.
26
, 717
–720
.10.
K.
Ishikawa
, T.
Ogata
and K.
Nagai
, Fractal in discontinuous deformation of alloys in liquid helium
, Journal of Materials Science Letters
Volume 8
, Number 11
(1989
), 1326
–1327
, DOI:.11.
José
Gaite
, Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe
, JCAP
03
(2010
) 006
.12.
Mathur
SK
, Doke
AM
, Sadana
A.
Identification of hair cycle-associated genes from time-course gene expression profile using fractal analysis.
Int J Bioinform Res Appl.
2006
; 2
(3
):249
–58
.13.
Anton
Howard
, 1994
, Elementary Linear Algebra
, 7th edition. New York
: John Wiley and Sons
14.
Falconer
, K.J.
, 1992
. Fractal Geometry: Mathematical Foundations and Applications. Wiley
, Chichester, UK
.15.
Russ
John C.
, Fractal Surfaces
, Plenum Press
, New York
, 1994
, pp.41
–42
.16.
Rasband
WS
. ImageJ
, U.S. National Institutes of Health
, Bethesda, Maryland, USA
, imagej.nih.gov/ij/,1997–2012.17.
Abràmoff
MD
, Magalhães
PJ
and Ram
SJ
. “Image Processing with ImageJ
”, Biophotonics International
, 11
(7
):36
–42
, 2004
.18.
Schneider
CA
, Rasband
WS
and Eliceiri
KW
. “NIH Image to ImageJ: 25 years of image analysis
”, Nature Methods
, pp. 671
, 2012
.19.
V. P.
Dimri
, 2005
, Fractal Behaviour of the Earth System
, Netherlands
: Springer-Verlag Berlin Heidelberg
2005
, pp. 24
.20.
Wong
, L.S.
, R.
Hashim
and F.H.
Ali
, 2008
. Strength and permeability of stabilized peat soil.
. J. Applied Sci.
, 8
: 3986
–3990
.
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.