The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT’s surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp3 bond with three adjacent carbon atoms, where the tetrahedral form of its sp3 bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µB. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

1.
G.
Zhang
,
P.
Qi
,
X.
Wang
,
Y.
Lu
,
D.
Mann
,
X.
Li
, and
H.
Dai
,
J. Am. Chem. Soc.
128
,
6026
6027
(
2006
).
2.
A.
Nikitin
,
H.
Ogasawara
,
D.
Mann
,
R.
Denecke
,
Z.
Zhang
,
H.
Dai
,
K.
Cho
, and
A.
Nilsson
,
Phys. Rev. Lett.
95
,
225507
(
2005
).
3.
M. S.
Alam
,
F.
Muttaqien
, and
A.
Setiadi
, and
M.
Saito
,
J. Phys. Soc. Jpn.
82
,
044702
(
2013
).
4.
X.
Pei
,
X.
Yang
, and
J.
Dong
,
Phys. Rev. B
73
,
195417
(
2006
).
5.
D.
Golberg
,
Y.
Bando
,
L.
Bourgeois
,
K.
Kurashima
, and
T.
Sato
,
Carbon
38
,
2017
2027
(
2000
).
6.
R. H.
Xie
,
Chem. Phys. Lett.
310
,
379
(
1999
).
7.
F. J.
Owens
,
Nanoscale Res. Lett.
2
,
447
449
(
2007
).
8.
J.
Haruyama
,
M.
Matsudaira
,
J.
Reppert
,
A.
Rao
,
T.
Koretsune
,
S.
Saito
,
H.
Sano
, and
Y.
Iye
,
J. Supercond. Nov. Magn.
24
,
111
120
(
2011
).
9.
Y.
Yagi
,
T. M.
Briere
,
M. H. F.
Sluiter
,
V.
Kumar
,
A. A.
Farajian
, and
Y.
Kawazoe
,
Phys. Rev, B
69
,
075414
(
2004
).
10.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
18
(
1996
).
11.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
12.
R. J.
Baierle
,
S. B.
Fagan
,
R.
Mota
,
A. J. R.
Silva
,
A.
Fazzio
,
Phys. Rev. B
64
,
085413
(
2001
).
13.
J. C.
Woicik
,
B.
Steiner
,
K. E.
Miyano
,
S. G.
Bompadre
,
L. B.
Sorensen
,
T. L.
Lee
, and
S.
Khalid
,
Phys. Rev. Lett.
79
,
25
(
2001
).
14.
E.
Durgun
,
S.
Dag
, and
S.
Ciraci
,
Phys. Rev. B
70
,
155305
(
2004
).
15.
B.
Xu
and
B. C.
Pan
,
Nanotech.
19
,
075706
(
2008
).
16.
I. O.
Maciel
,
J.
Campos-Delgado
,
E.
Cruz-Silva
,
M. A.
Pimenta
,
B. G.
Sumpter
,
V.
Meunier
,
F.
López-Urías
,
E.
Muñoz-Sandoval
,
H.
Terrones
,
M.
Terrones
, and
A.
Jorio
,
Nano Lett.
9
,
2267
2272
(
2009
).
17.
E.
Cruz-Silva
,
F.
López-Urías
,
E.
Muñoz-Sandoval
,
B. G.
Sumpter
,
H.
Terrones
,
J. C.
Charlier
,
V.
Meunier
, and
M.
Terrones
,
Am. Chem. Soc. Nano
7
,
1913
1921
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.