In this paper we present Joyce construction’s of selfdual metric in four dimensions and made a comparison on Einstein and maximally symmetric space condition. By calculating both condition using Levi-Civita connection in holonomic (coordinate) bases, we find that both condition satisfies the zero proportionality constant, that is, Ricci flat for Einstein condition and zero Gaussian curvature for maximally symmetric space. From these results, we conclude that Joyce’s metric satisfies the flat space condition.
REFERENCES
1.
D. D.
Joyce
, Duke Math. J.
77
, 519
–552
(1995
).2.
M. F.
Rozi
, “Einstein Condition vs. Self-Dual Condition for 4D Metric with Torus Symmetry
”, Master Thesis, Institut Teknologi Bandung
, 2011
.3.
B. F.
Schutz
, A First Course in General Relativity
, New York
: Cambridge University Press
, 2009
.4.
O. P.
Santillan
and A. G.
Zorin
, Commun. Math. Phys.
255
, 33
–59
(2005
).5.
6.
R. N.
Wijaya
, “Einstein and Maximally Symmetric Space Condition for 4D Metric with Torus Symmetry
”, Bachelor Thesis, Institut Teknologi Bandung
, 2012
.7.
L.
Ryder
, Introduction to General Relativity
. New York
: Cambridge University Press
, 2009
.
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.