In this research we report a study of graphene growth using annealed silver film via hot wire cell very high frequency plasma enhanced chemical vapor deposition (HWC VHF PECVD) method with 20 sccm flow rate of methane at relatively low substrate temperature (275 °C). The silver metal catalyst-thin film was prepared by low pressure physical vapor deposition (PVD) method and the structure was optimized by annealing treatment at 600 °C in two conditions at 30 and 60 minutes. The XRD investigation shows the annealed silver film at 60 minutes has the best structure with maximum intensity located at (111) direction and 2θ = 38.12° position while interplane distance at d = 0.23 nm and lattice parameter a = 0.408 nm. UV-Vis measurement shows the maximum peak absorbance of pristine silver was at 411 nm while the annealing treatment for both did not significantly change the peaks position. On the other hand graphene deposited on the silver film have two peaks in which belong to carbon (λgraph = 400.58) and silver (λAg = 420.92 nm). Characterization of the graphene on silver was measured by Raman spectroscopy for three conditions (20, 10 and 8 watts).

1.
C. A.
Howsare
,
X.
Weng
,
V.
Bojan
,
D.
Snyder
and
J. A.
Robinson
,
Nanotechnology
23
,
135601
(
2012
).
2.
C. N. R.
Rao
,
K. S.
Subrahmanyam
,
H. S. S. R.
Matte
,
B.
Abdulhakeem
,
A.
Govindaraj
,
B.
Das
,
P.
Kumar
,
A.
Ghosh
and
D. J.
Late
,
Science Technology Adv. Mater
11
,
054502
(
2010
).
3.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S.K
Banerjee
,
L.
Colombo
,
R.S.
Ruoff
,
Science
324
,
1312
(
2009
).
4.
J. H.
Kim
,
E. J. D.
Castro
,
Y. G.
Hwang
and
C. H.
Lee
,
Korean Phys Soc
Vol.
58
, (
2011
).
5.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater
6
,
183
(
2007
).
6.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. I. V.
Grigorieva
,
S. V.
Dubonos
and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
7.
Z.
Ni
,
Y.
Wang
,
T.
Yu
and
Z.
Shen
,
Nano Research
1
,
273
(
2008
).
8.
J. L.
Qi
,
W. T.
Zheng
,
X. H.
Zhenga
,
X.
Wang
,
H. W.
Tian
,
Appl. Surf. Science
257
,
6531
6534
(
2011
).
9.
R.
Vitchev
,
A.
Malesevic
,
R. H.
Petrov
,
R.
Kemps
,
M.
Mertens
,
A.
Vanhulsel
and
C.V.
Haesendonck
Nanotech.
21
,
095602
(
2010
).
10.
K. M.
Reddy
,
D.
Andrew
,
Gledhill
,
C. H.
Chen
,
J. M.
Drexler
, and
N. P.
Padture
,
Appl. Phys. Letters
98
,
113117
(
2011
).
11.
Y.
Cui
,
Q.
Fu
,
D.
Tan
,
X.
Bao
,
Chem. Phys. Chem.
11
,
995
998
(
2010
).
12.
M.
Gao
,
Y.
Pan
,
L.
Huang
,
H.
Hu
,
L. Z.
Zhang
,
H. M.
Guo
,
S. X.
Du
, and
H. G.
Jian
,
Appl. Phys. Letter
98
,
033101
(
2011
).
13.
V. C.
Vo
,
A.
Kimouche
,
A. R.
Plantey
,
O.
Fruchart
,
P. B.
Guillemaud
,
N.
Bendiab
and
Coraux
,
Appl. Phys. Letters
98
,
181903
(
2011
).
14.
D.
Nezich
,
A.
Reina
and
J.
Kong
,
Nanotech
23
,
015701
(
2012
).
15.
R.
Sayah
, et al,
Microporous and Mesoporous Materials
139
,
45
51
(
2011
).
16.
K.M.A.
Majeed
, et al,
Appl. Surf Sci.
257
,
10607
10612
(
2011
).
17.
P.
Zhao
,
S.
Weitao
,
R.
Wang
,
X. F.
Xu
,
F.
Zhang
.
Physica E
41
,
387
390
(
2009
).
18.
R. C.
Adochitea
, et al,
Appl. Surf. Science
258
,
4028
4034
(
2012
).
19.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
and
M. S.
Dresselhaus
,
Phys. Rep.
473
,
51
(
2009
).
20.
A. C.
Ferrari
,
J.C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
Roth
and
A. K.
Geim
,
Phys. Rev. Lett
97
,
187401
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.