Accurate modeling and estimation of impedance functions is essential for the correct interpretation of Controlled Source Audio Magnetotelluric (CSAMT) measurements. Non plane wave effect of CSAMT source and noises are inevitably encountered when CSAMT observations are conducted and, consequently, impedance estimates are usually based on least-squares (LS) approximation, and the resulting estimates need to be corrected for the non plane wave field fraction. However, estimation procedure based on LS would not be statistically optimal, as outliers (abnormal data) are frequently superimposed on a normal ambient CSAMT noise field. In this situation, the estimation can be seriously misleading, while plane wave correction has also limited application, as the non plane wave field fraction is reasonably strong. This paper briefly discus the recent development of alternative methods for the CSAMT impedance modeling and its estimation, those are efficient in nature. The means for accomplishing the non plane wave problem is based on full solution numerical modeling of CSAMT impedance function that accommodates the non plane wave effect in the function. Whilst, one appealing approach to dealing with outliers is to make the estimation procedure robust. This is based on the M-estimation and the Hilbert transform operating on the causal CSAMT impedance functions. As demonstrated, the full solution based modeling for CSAMT impedance function is applied for all measurement zones, including near-, transition- as well as the far-field zones, and suitably, the plane wave correction is no longer needed for the impedance function. In the resulting impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic data, it is shown that the proposed methods can produce usable CSAMT impedance functions for all measurement zones, even under condition of severe noise contamination.

1.
Yamashita
M.
,
Hallof
P.G.
, and
Pelton
,
W.H
,
CSAMT case historis with a multichannel CSAMT system and near field data correction
,
55th SEG Annual Convention
,
276
278
(
1985
).
2.
Bartel
,
L. C.
, and
Jacobson
,
R. D.
,,
Results of a controlled source audiofrequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii
,
Geophysics
,
52
,
665
677
(
1987
)
3.
Kaufmann
,
A.A.
and
Keller
,
G.V.
,
Frequency and Transient Sounding
,
Elsevier
(
1983
)
4.
Ward
,
S.H
,
dan Hohmann
,
G.W
, Electromagnetic Theory for Geophysical Applications, in
Nabighian
,
M. N.
Ed.,
Electromagnetic Methods, Theory and Practice vol.1, Society of Exploration Geophysicist
,
131
311
(
1988
)
5.
Singh
,
N.P.
, and
Mogi
,
T.
,
EMDPLER: A F77 program for modeling the EM response of dipolar sources over the non magnetic layer earth model
,
Computer and Geosciences
,
36
,
430
440
(
2010
)
6.
Stoyer
,
C.H.
, and
Greenfield
,
R.J.
,
Numerical solutions of the response of a two dimensional earth to an oscillating magnetic dipole source
,
Geophysics
,
41
,
519
530
(
1976
).
7.
Unsworth
,
M.J.
,
Travis
,
B.J.
,
Chave
,
A.D.
,
Electromagnetic Induction by a Finite Electric Dipole Source Over a 2D Earth
,
Geophysics
,
58
:
2
,
198
214
(
1992
)
8.
Mitsuhata
,
Y.
,
2-D Electromagnetic modeling by finite-element method with a dipole source and topography
,
Geophysics
,
65
,
465
475
(
2000
).
9.
Li
,
Y.
,
Key
,
K.
,
2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm
,
Geophysics
,
72
,
WA51
WA62
(
2007
)
10.
Streich
,
R.
,
3D finite difference frequency modeling of controlled source electromagnetic data: direct solution and optimization for high accuracy
,
Geophysics
74
,
95
105
(
2009
).
11.
Lee
,
K.H.
, and
Morrison
,
H.F.
,
A numerical solution for electromagnetic scattering by a two dimensional inhomogenity
,
Geophysics
, Vol
50
, P
1163
1165
(
1985
).
12.
Boschetto
,
N.B.
,
Hohmann
,
G,W.
,
Controlled Source Audiofrequency Magnetotelluric Responses of Three Dimensional Bodies
,
Geophysics
,
56
:
2
, P
255
265
(
1991
).
13.
Newman
G. A.
,
Hohmann
,
G. W.
, and
Anderson
,
W. L.
,
Transient electromagnetic response of a three-dimensional body in a layered earth
:
Geophysics
,
51
,
1608
1627
(
1986
).
14.
Mohammad
,
I.H.
,
W.
Srigutomo
,
D.
Sutarno
,
P.
Soemintadiredja
,
The Modeling of 2D Controlled Source Audio Mangnetotelluric (CSAMT) Responses Using Finite Element Method
,
Journal of Electromagnetic Analysis and Applications
,
4
:
7
,
294
304
(
2012
).
15.
Hohmann
,
W, G.
, Numerical Modeling for Electromagnetic Methods of Geophysics, in
Nabighian
,
M. N.
Ed.,
Electromagnetic Methods, Theory and Practice vol.1, Society of Exploration Geophysicist
, page
131
311
(
2009
).
16.
Mohammad
,
I.H.
,
W.
Srigutomo
,
D.
Sutarno
,
P.
Soemintadiredja
,
Full Solution Modeling of 1D Controlled-Source Audio-Magnetotelluric (CSAMT) Responses
,
ITB Journal of Sciences
(submitted)
17.
Routh
,
S.P.
, and
Oldenburg
,
D.W.
,
Inversion of Controlled Source Audio Frequency Magnetotelluric Data for Horizontally Layered Earth
,
Geophysics
,
64
,
1689
1697
(
1999
).
18.
Zonge
,
K.L.
, and
Hughes
,
L.J.
, Controlled source audio-frequency magnetotellurics, in
Nabighian
M.N.
ed.,
Electromagnetic methods in applied geophysics, Vol. 2, B, Society of Exploration Geophysicists
,
Tulsa
,
713
809
(
1991
).
19.
Supriadi
,
Sutarno
,
D.
,
Hordt
,
A.
, Controlled-Source Audio Magnetotellurics (CSAMT) Surveys at Merapi Volcano in “
Decade Volcanoes under Investigation
”,
Zschau
,
J.
and
Westerhaus
,
M.
, (eds).
Dt. Geophys. Gesellschaft
,
Germany
(
2000
).
20.
Chave
,
A. D.
,
Thomson
,
D. J.
,
Some comments on magnetotelluric response function estimation
:
J. Geophys. Res.
,
94
,
14215
14225
(
1989
).
21.
Sutarno
,
D.
, and
Vozoff
,
K.
,
Robust M-estimation of magnetotelluric impedance tensors
:
Expl. Geophys.
,
20
,
283
398
(
1989
).
22.
Sutarno
,
D.
, and
Vozoff
,
K.
,
Phase-smoothed robust M-estimation of magnetotelluric impedance functions
:
Geophysics
,
56
,
1999
2007
(
1991
).
23.
Sutarno
,
D.
and
Vozoff
,
K.
,
An application of regression M-estimation with the Hilbert transform to magnetotelluric data processing
,
Explor. Geophys.
22
,
383
390
(
1991
).
24.
Jones
,
A. G.
,
Chave
,
A.D.
Egbert
,
G. D.
Auld
,
D.
and
Bahr
,
K.
,
A comparison of techniques for magnetotelluric respon estimation
:
J. Geophys. Res.
,
94
,
14201
14123
(
1989
).
25.
Sutarno
,
D.
and
I.
Fatrio
,
Robust M-estimation of CSAMT impedance functions
,
Indonesian Journal of Physics
,
18
:
3
,
81
85
(
2007
).
26.
Sutarno
,
D.
and
I.
Fatrio
,
An application of robust M-estimation to CSAMT data processing
,
Proc. of The 117-th SEGJ Conference
,
263
266
(
2007
).
27.
Sutarno
,
D.
ann
I.
Fatrio
,
An Application of robust M-estimation with the Hilbert transform to CSAMT data processing
,
Proc. of The 2nd Asian Physics Symposium
, ISBN: 978-979-17090-1-9 (
2007
).
28.
Sutarno
,
D.
,
Constrained robust estimation of magnetotelluric impedance functions based on a bounded-influence regression M-estimator and the Hilbert transform
,
Nonlinear Processes in Geophysics
,
15
:
2
,
287
293
(
2008
).
29.
Sutarno
,
D.
,
Robust Magnetotelluric Impedance Estimation
,
American Institute of Physics Proceeding
,
1325
,
24
27
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.