Electromagnetic Acoustic Transducers (EMATs) are an attractive alternative to standard piezoelectric probes in those applications where couplant fluid cannot be used, i.e. high speed or high temperature testing, or when specific wave-modes have to be excited. When used on ferromagnetic samples, EMATs generate elastic waves through three different transduction mechanisms: the Lorentz force, the magnetization force and magnetostriction. The modeling of such phenomena has drawn the attention of several researchers, leading to different physical formalizations, especially for magnetostriction, being the most complex mechanism. This work presents a physics-based model for tangential bias field magnetostrictive EMATs employing surface tractions equivalent to the inertia body forces caused by magnetostrictive strains. This type of modeling had been previously used to validate a Finite Element model for normal bias field EMATs and here is extended to the tangential bias field configuration. Moreover, it is shown that the proposed model is equivalent to a recently developed method using the spatial convolution integral of body forces with Green’s tensor to model elastic wave generation in a solid half-space.

This content is only available via PDF.
You do not currently have access to this content.