The paper is a part of student cooperation in AKTION project (Austria-Czech) and concentrates on the numerical solution of partial differential equations (PDEs) using high-order forward, backward and symmetrical formulas. As an example, the hyperbolic PDE is analyzed. The paper is based on the numerical solution of ordinary differential equations by the Taylor series method and on the simulation language TKSL that has been created to test the properties of the technical initial problems and to test an algorithm for Taylor series method. The idea of parallel computations using special integrators is also a part of the paper.

1.
J.
Kunovský
,
Modern Taylor Series Method
,
FEI-VUT Brno
,
1994
,
habilitation work
.
2.
J.
Kunovský
,
High Performance Computing - TKSL software
(
2014
), URL http://www.fit.vutbr.cz/∼kunovsky/ TKSL/index.html.en.
3.
R. L.
Burden
, and
J. D.
Faires
,
Numerical Analysis
,
Cengage Learning
,
2010
, ISBN 978-0-538-73351-9, URL http://ins.sjtu.edu.cn/people/mtang/textbook.pdf.
4.
P. J.
Collins
,
Differential and Integral Equations
,
Oxford University Press
,
2006
, ISBN 978-0-19-929789-4.
5.
M.
Grasselli
, and
D.
Pelinovsky
,
Numerical Mathematics
,
Jones & Bartlett Learning
,
2008
, ISBN 9780763737672.
6.
E.
Hairer
,
S. P.
Nørsett
, and
G.
Wanner
,
Solving Ordinary Differential Equations I
,
vol. Nonstiff Problems
.
Springer-Verlag Berlin Heidelberg
,
1987
, ISBN 3-540-56670-8.
7.
E.
Hairer
, and
G.
Wanner
,
Solving Ordinary Differential Equations II
,
second revised ed. with 137 Figures, vol. Stiff and Differential-Algebraic Problems
.
Springer-Verlag Berlin Heidelberg
,
2002
, ISBN 3-540-60452-9.
8.
E. W.
Cheney
, and
D. R.
Kincaid
,
Numerical Mathematics and Computing
,
Cengage Learning
,
2013
, 7th edn.
This content is only available via PDF.
You do not currently have access to this content.