We consider continuous random dynamical systems with jumps. We estimate the dimension of the invariant measures and apply the results to a model of stochastic gene expression.

1.
T.
Bielaczyc
,
Hausdorff dimension of invariant measures related to Poisson driven stochastic differential equations
,
Ann. Polon. Math.
101
,
67
74
(
2011
).
2.
T.
Bielaczyc
,
K.
Horbacz
,
The Hausdorff dimension of invariant measures for random dynamical systems
,
J. Math. Anal. Appl.
391
,
298
311
(
2012
).
3.
A.
Bobrowski
,
Degenerate convergence of semigroups related to a model of eukaryotic gene expression
,
Semigroup forum
,
73
,
343
366
(
2006
).
4.
K.U.
Frisch
, Wave propagation in random media, stability,
Probabilistic Methods in Applied Mathematics
,
A. T.
Bharucha-Reid
ed.
Academic Press
.,
1986
.
5.
K.
Horbacz
,
Random dynamical systems with jumps
,
J. Appl. Probab.
41
,
890
910
(
2004
).
6.
K.
Horbacz
,
Invariant measures for random dynamical systems
,
Dissert. Math.
451
(
2008
).
7.
K.
Horbacz
,
Continuous random dynamical systems
,
J. Math. Anal. Appl.
408
,
623
637
(
2013
).
8.
K.
Horbacz
and
T.
Szarek
,
Randomly connected dynamical systems on Banach spaces
,
Stoch. Anal. Appl.
19
.
4
,
519
543
(
2001
).
9.
J.
Jaroszewska
,
M.
Rams
,
On the Hausdorff dimension of invariant measures of weakly contracting on average measurable IFS
,
Journal of Stat. Phys.
132
,
907
919
(
2008
).
10.
T.
Kudo
and
I.
Ohba
,
Derivation of relativistic wave equation from the Poisson process
,
Pramana - J. Phys.
59
,
413
416
(
2002
).
11.
A.
Lasota
and
M. C.
Mackey
,
Cell division and the stability of cellular population
,
J. Math. Biol.
38
,
241
261
(
1999
).
12.
A.
Lasota
and
J.
Myjak
On a dimension of measures
,
Bull. Polish Acad. Sci. Math.
50
,
221
235
(
2002
).
13.
A.
Lasota
and
T.
Szarek
,
Dimension of measures invariant with respect to the Ważewska partial differential equation
,
J.Differential Equations
2
196
,
448
456
(
2004
).
14.
T.
Lipniacki
,
P.
Paszek
,
A.
Marciniak-Czochra
,
A. R.
Brasier
,
M.
Kimel
,
Transcriptional stochasticity in gene expression
,
J. Theor. Biol.
238
,
348
367
(
2006
).
15.
J.
Myjak
and
T.
Szarek
,
On Hausdorff dimension of invariant measures arising from non–contractive iterated function systems
,
Ann. Mat. Pura Appl. IV, Ser.
181
,
223
237
(
2002
).
16.
G.
Prodi
,
Teoremi Ergodici per le Equazioni della Idrodinamica
,
C.I.M.E.
,
Roma
.,
1960
.
17.
I.
Werner
,
Contractive Markov systems
,
J.London Math.Soc.
2
71
,
236
258
(
2005
).
This content is only available via PDF.
You do not currently have access to this content.