We consider a problem of heat transfer with coefficients depending on external factors. Due to molecular mechanisms, this dependence is characterized by a time delay. We discuss the impact of this delay on the blow-up time for the problem and the possibility to control the blow-up time in this connection.

1.
L. A.
Uvarova
and
V. K.
Fedyanin
,
Matematicheskoe modelirovanie
2
, pp.
40
54
(
1990
).
2.
E.
Mitidieri
and
S. I.
Pohozaev
,
Proc. Steklov Inst. Math.
234
, pp.
1
362
(
2001
).
3.
E.
Galakhov
and
O.
Salieva
,
Journ. Math. Anal. and Appl.
408
, pp.
102
113
(
2013
).
4.
E.
Galakhov
and
O.
Salieva
, to appear in
Proceedings of IXth ISAAC Congress
,
Krakow, Poland
(
2014
).
5.
A. A.
Samarskii
,
V. A.
Galaktionov
,
S. P.
Kurdyumov
, and
A. P.
Mikhailov
,
Blow-up in Quasilinear Parabolic Equations
,
Walter de Gruyter
,
Berlin, New York
(
1995
).
6.
Kh.
Ezzinbi
and
M.
Jazar
,
Positivity
10
, pp.
329
341
(
2006
).
7.
A. C.
Casal
,
J. I.
Diaz
, and
J. M.
Vegas
,
Dynamic Systems and Applications
18
, pp.
29
46
(
2009
).
8.
S. P.
Kurdyumov
,
E. S.
Kurkina
, and
G. G.
Malinetsky
,
Dissipative structures in media with distributed parameters
(
in Russian
). Preprint No. 16.
Institut of Applied Mathematics, Russian Academy of Sciences
, pp.
1
79
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.