In this study, approximate solution of Kuramoto–Sivashinsky Equation, by the reduced differential transform method, are presented.We apply this method to an example.Thus, we have obtained numerical solution Kuramoto– Sivashinsky equation. Comparisons are made between the exact solution and the reduced differential transform method. The results show that this method is very effective and simple.

1.
Y.
Keskin
,
G.
Oturanc
,
Reduced differential transform method for partial differential equations
,
Int. J. Nonlinear Sci. Numer. Simul.
10
(
6
),
2009
, pp.
741
749
.
2.
Y.
Keskin
,
G.
Oturanc
,
The reduced differential transform method: a new approach to factional partial differential equations
,
Nonlinear Sci. Lett.
A 1
(
2
),
2010
, pp.
207
217
.
3.
Y.
Keskin
,
G.
Oturanc
,
Reduced differential transform method for generalized KdV equations
,
Math. Comput. Applic.
15
(
3
),
2010
,
382
393
.
4.
Y.
Keskin
, Ph.D Thesis,
Selcuk University
,
2010
(in Turkish).
5.
C.
Li
,
G.
Chen
and
S.
Zhao
,
Exact Travelling wave solutionsto the generalized Kuramoto-Sivashinsky equation
,
Latin American Appl. Research
,
34
,
2004
,pp.
64
68
.
6.
M.
Kurulay
,
A.
Secer
and
M. A.
Akinlar
,
A New Approximate Analytical Solution of Kuramoto – Sivashinsky Equation Using Homotopy Analysis Method
,
Appl. Math. & Inf. Sci.
7
(
1
),
2013
, pp.
267
271
.
7.
G. I.
Sivashinsky
,
Nonlinear Analysis of hydrodynamic instability in laminar flames, Part I, Derivation of Basic Equations
,
ActaAstronautica
,
4
,
1977
, pp.
1177
1206
.
8.
G. I.
Sivashinsky
,
On flame propagation under conditions of stoichiometry
,
SIAM J. Appl. Math.
,
39
,
1980
,pp.
67
82
.
9.
M. G.
Porshokouhi
and
B.
Ghanbari
,
Application of Hesvariational iteration method for solution of the family of KuramotoSivashinsky equations Original Research Article
,
J. King Saud Univ. Sci.
,
23
(
4
),
2011
, pp.
407
41
.
10.
L.
Debtnath
,
Nonlinear Partial Differential Equations for Scientist and Engineers
,
Birkhauser
,
Boston
,
1997
.
11.
G.
Adomian
,
A new approach to nonlinear partial differential equations
,
J. Math. Anal. Applic.
102
,
1984
pp.
420
434
.
12.
A.M.
Wazwaz
,
Partial differential equations: methods and applications
,
The Netherlands
:
Balkema Publishers
,
2002
.
13.
J.H.
He
,
Variational iteration method-a kind of non-linear analytical technique: Some
examples Int. J. Non-Linear Mechanics
,
34
(
4
),
1999
,pp.
699
708
.
14.
S.J.
Liao
,
Homotopy analysis method: a new analytic method for nonlinear problems
,
Appl. Math. And Mechanics
,
19
(
10
),
1998
,pp.
957
962
.
15.
S.J.
Liao
,
On the homotopy analysis method for nonlinear problems
,
Appl. Math. Comput.
147
(
2
),
2004
,pp.
499
513
.
16.
J.K.
Zhou
,
Differential Transformation and its Application for Electrical Circuits
,
Huazhong University Press
,
Wuhan, China
,
1986
.
17.
N.
Bildik
,
A.
Konuralp
,
The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations
,
Int. J. Nonlinear Sci. Numer. Simul.
7
(
1
),
2006
,pp.
65
70
.
18.
V.O.
Vakhnenko
,
E.J.
Parkes
,
A.J.
Morrison
,
A Bäcklund transformation and the inverse scattering transform method for the generalized Vakhnenko equation
,
Chaos Solitons Fractals
17
(
4
),
2003
,pp.
683
692
.
19.
L.
Brugnano
,
G.
Carreras
,
K.
Burrage
,
On the Convergence of LMF-type Methods for SODEs
,
Mediterr. J. Math.
1
(
3
),
2004
, pp.
297
313
20.
A.
Saravanan
,
N.
Magesh
,
A comparison between the reduced differential transform method and the Adomian decomposition method for the Newell–Whitehead–Segel equation
,
J. Egypt.Math. Soc.
21
(
3
),
2013
, pp.
259
265
.
21.
R.
Abazari
,
M.
Abazari
,
Numerical study of Burgers–Huxley equations via reduced differential transform method
,
Comput. Appl. Math.
32
(
1
),
2013
, pp.
1
17
.
22.
B.
Bis
,
M.
Bayram
,
Approximate solutions for some nonlinear evolutions equations by using the reduced differential transform method
,
Int. J. Appl. Math. Res.
1
(
3
),
2012
, pp.
288
302
.
23.
R.
Abazari
,
B.
Soltanalizadeh
,
Reduced differential transform method and its application on Kawahara equations
,
Thai J. Math.
11
(
1
),
2013
, pp.
199
216
.
24.
M.A.
Abdou
,
A.A.
Soliman
,
Numerical simulations of nonlinear evolution equations in mathematical physics
,
Int. J. Nonlinear Sci.
12
(
2
)
2011
, pp.
131
139
.
This content is only available via PDF.
You do not currently have access to this content.