In complex analysis, every harmonic function admits a decomposition as a sum of a holomorphic and an anti-holomorphic function. However, this fact does not hold for paravector-valued harmonic functions, or so-called 𝒜-valued harmonic functions, in quaternion function theory. In previous articles, the authors proved that by taking into account ψ-hyperholomorphic functions, where ψ is a structural set different from the standard one and its conjugation, every 𝒜-valued harmonic function can be written as a sum of a monogenic, an anti-monogenic and a ψ-hyperholomorphic function. In this paper, we revisit such a decomposition and apply it to study problems in elasticity.
REFERENCES
1.
C.
Álvarez-Peña
and R.
Michael Porter
, Contragenic Functions of Three Variables
, Complex Anal. Oper. Theory
, 8
(2014
), 409
–427
.2.
H.
Bauch
, Approximationssätze für die Lösungen der Grundgleichung der Elastostatik
, Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen
, in German
, 1981
.3.
S.
Bock
and K.
Gürlebeck
, On a spatial generalization of the Kolosov–Muskhelishvili formulae
, Math. Meth. Appl. Sci.
, 32
(2009
), 223
–240
.4.
I.
Cação
, Constructive Approximation by Monogenic polynomials
, PhD thesis, Universidade de Aveiro, Departamento de Matemática
, 2004
.5.
R.
Eubanks
and E.
Sternberg
, On the Completeness of the Boussineque Papkovich Stress Functions
, J. Rat. Mech. Anal.
, 5
(1956
), 735
–746
.6.
K.
Gürlebeck
and H.
Malonek
, A hypercomplex derivative of monogenic functions in and its applications
, Complex Variables
, 39
, No. 3
(1999
), 199
–228
.7.
K.
Gürlebeck
and H. M.
Nguyen
, On ψ-hyperholomorphic functions in
, AIP Conference Proceedings
1558
, 496
(2013
); doi: 8.
Klaus
Gürlebeck
, Hung Manh
Nguyen
and Dmitrii
Legatiuk
, An additive decomposition of harmonic functions in
, Computational Science and Its Applications – ICCSA 2014
, Lecture Notes in Computer Science (LNCS)
, 8579
(2014
), 189
–203
.9.
M.
Gurtin
, On Helmholtz’s Theorem and the Completeness of the Papkovich-Neuber Stress Functions for Infinite Domains
, Arch. Rational Mech. Anal.
, 9
(1962
), 225
–233
.10.
M. E.
Luna Elizarrarás
and M.
Shapiro
, A survey on the (hyper)derivates in complex, quaternionic and Clifford analysis
, Millan J. of Math
, 79
(2011
), 521
–542
.11.
R.
Mindlin
, Note on the Galerkin and Papkovitch stress functions
, Bull. Amer. Math. Soc.
, 42
(1936
), 373
–376
.12.
J.
Morais
, Approximation by homogeneous polynomial solutions of the Riesz system in
, PhD thesis, Bauhaus-Universität Weimar
, 2009
.13.
N.
Muskhelishvili
, Some Basic Problems of the Mathematical Theory of Elasticity
, Springer
, 1977
.14.
H.
Neuber
, Ein neuer ansatz zur lösung räumlicher probleme der elastizitätstheorie. der hohlkegel unter einzellast als beispiel
, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
, 14
(1934
), 203
–212
.15.
16.
K.
Nôno
, On the quaternion linearization of Laplacian Δ
, Bull. Fukuoka Univ. Edu.
, 35
(1985
), 5
–10
.17.
P.
Papkovic
, Solution générale des équations différentielles fondamentales de I’élasticité, exprimée par un vecteur et un scalaire harmonique
(Russisch), Bull. Acad. Sc. Leningrad
(1932
), S. 1425
–1435
.18.
M. V.
Shapiro
and N. L.
Vasilevski
, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory
, Complex Variables
, 27
(1995
), 17
–46
.19.
N.
Vasilevski
and M.
Shapiro
, On an analog of the monogenity in the sense of Moisil-Theodoresko and some applications in the theory of the boundary value problems
, Reports of the enlarged session of seminar of the Vekua Applied Mathematics Institute
, Tibilis
, 1
(1985
), 63
–66
.20.
D.
Weisz-Patrault
, S.
Bock
and K.
Gürlebeck
, Three-dimensional elasticity based on quaternion-valued potentials
, to appear in International Journal of Solids and Structures
.
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.