In this paper, reduced differential transform method is employed to approximate the solutions of (2+1) dimensional type of the Zakharov–Kuznetsovpartial differential equations. We apply this method to two examples. Thus, we have obtained numerical solution Zakharov–Kuznetsov equations. These examples are prepared to show the efficiency and simplicity of this method.
REFERENCES
1.
L.
Debtnath
, Nonlinear Partial Differential Equations for Scientist and Engineers
, Birkhauser
, Boston
, 1997
.2.
G.
Adomian
, A new approach to nonlinear partial differential equations
, J. Math. Anal. Applic.
102
, 1984
pp. 420
–434
.3.
G.
Adomian
, Solving Frontier Problems of Physics: The Decomposition Method
, Kluwer
, 1994
.4.
A.M.
Wazwaz
, Partial differential equations: methods and applications
, The Netherlands
: Balkema Publishers
, 2002
.5.
J.H.
He
, Variational iteration method-a kind of non-linear analytical technique: Some examples
Int. J. Non-Linear Mechanics
, 34
(4
) (1999
) pp. 699
–708
.6.
D.D.
Ganji
, A.
Sadighi
, I.
Khatami
, Assessment of two analytical approaches in some nonlinear problems arising in 7. engineering sciences
, Phys. Letters
372
,.2008
, pp. 4399
–4406
.8.
S.J.
Liao
, Homotopy analysis method: a new analytic method for nonlinear problems
, Appl. Math. And Mechanics
,19
(10
), 1998
,pp.957
–962
.9.
S.J.
Liao
, Beyond Perturbation: Introduction to the Homotopy Analysis Method
, Chapman & Hall/CRC Press
, Boca Raton
, 2003
.10.
S.J.
Liao
, On the homotopy analysis method for nonlinear problems
, Appl. Math. Comput.
147
(2
), 2004
),pp.499
–513
.11.
J.K.
Zhou
, Differential Transformation and its Application for Electrical Circuits
, Huazhong University Press
, Wuhan, China
, 1986
.12.
N.
Bildik
, A.
Konuralp
, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations
, Int. J. Nonlinear Sci. Numer. Simul.
7
(1
), 2006
,pp. 65
–70
.13.
V.O.
Vakhnenko
, E.J.
Parkes
, A.J.
Morrison
, A Bäcklund transformation and the inverse scattering transform method for the generalized Vakhnenko equation
, Chaos Solitons Fractals
17
(4
), 2003
,pp. 683
–692
.14.
L.
Brugnano
, G.
Carreras
, K.
Burrage
, On the Convergence of LMF-type Methods for SODEs
, Mediterr. J. Math.
1
(3
), 2004
, pp. 297
–313
15.
Y.
Keskin
, G.
Oturanc
, Reduced differential transform method for partial differential equations
, Int. J. Nonlinear Sci. Numer. Simul.
10
(6
), 2009
,pp. 741
–749
.16.
Y.
Keskin
, G.
Oturanc
, The reduced differential transform method: a new approach to factional partial differential equations
, Nonlinear Sci. Lett. A
1
(2
), 2010
,pp. 207
–217
.17.
Y.
Keskin
, G.
Oturanc
, Reduced differential transform method for generalized KdV equations
, Math. Comput. Applic.
15
(3
), 2010
, 382
–393
.18.
Y.
Keskin
, Ph.D Thesis, Selcuk University
, 2010
(in Turkish).19.
T.
Nawaz
, A.
Yıldırım
, S. T.
Mohyud-Din
, Analytical solutions Zakharov–Kuznetsov equations
, Adv. Powder Technology
, 24
, 2013
, pp. 252
–256
.20.
V.E.
Zakharov
, E.A.
Kuznetsov
, On three-dimensional solitons
, Sov. Phys.
39
,1974
, pp. 285
–288
.21.
S.
Monro
, E.J.
Parkes
, The derivation of a modified Zakharov–Kuznetsov equation and the stability of its solutions
, J. Plasma Phys.
62
(3
), 1999
, pp. 305
–317
.22.
S.
Monro
, E.J.
Parkes
, Stability of solitary-wave solutions to a modified Zakharov–Kuznetsov equation
, J. Plasma Phys.
64
(3
), 2000
, pp. 411
–426
.23.
A.M.
Wazwaz
, Nonlinear dispersive special type of the Zakharov–Kuznetsov equation ZK(n,n) with compact and non-compact structures
, Appl. Math. Comput.
161
, 2005
, pp. 577
–590
.24.
C.
Lin
, X.
Zhang
, The formally variable separation approach for the modified Zakharov–Kuznetsov equation
, Comm. Nonlinear Sci. Numer. Simul.
12
, 2007
, pp. 636
–642
25.
A.
Saravanan
, N.
Magesh
, A comparison between the reduced differential transform method and the Adomian decomposition method for the Newell–Whitehead–Segel equation
, J. Egypt.Math. Soc.
21
(3
), 2013
, pp. 259
–265
.26.
R.
Abazari
, M.
Abazari
, Numerical study of Burgers–Huxley equations via reduced differential transform method
, Comput. Appl. Math.
32
(1
), 2013
, pp. 1
–17
.27.
B.
bis
, M.
Bayram
, Approximate solutions for some nonlinear evolutions equations by using the reduced differential transform method
, Int. J. Appl. Math. Res.
1
(3
), 2012
, pp. 288
–302
.28.
R.
Abazari
, B.
Soltanalizadeh
, Reduced differential transform method and its application on Kawahara equations
, Thai J. Math.
11
(1
),2013
, pp. 199
–216
.29.
M.A.
Abdou
, A.A.
Soliman
, Numerical simulations of nonlinear evolution equations in mathematical physics
, Int. J. Nonlinear Sci.
12
(2
) 2011
, pp. 131
–139
.
This content is only available via PDF.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.