Some new aspects in a classic problem of axial rod compression are presented. For short-term impact the influence of longitudinal waves propagation on the rod instability is investigated. For the long-term compression which considerably exceeds the Euler load, the generalization of the overcritical deformations in the rod from investigated by M.A. Lavrentiev and A.Yu. Ishlinsky in the linear statement to the nonlinear Euler elastics is studied.

1.
L.
Euler
,
Foundation method of curves with maximal or minimal property
.
Moscow
.
GTTL
.
1934
. (
in Russian
)
2.
M. A.
Lavrent’ev
,
A. Ju.
Ishlinsky
,
Dynamical modes of stability loss of elastic systems
.
Dorlady Physics
.
1949
.
64
(
6
). P.
776
782
. (
in Russian
)
3.
N. F.
Morozov
,
P. E.
Tovstik
,
Dynamics of rod at a longitudinal impact
.
Vestnik St.Petersburg Univ. Ser. 1
.
2009
. No
2
. P.
105
111
. (
in Russian
)
4.
A. K.
Belyaev
,
D. N.
Il’in
,
N. F.
Morozov
,
Dynamical approach to the Ishlinsky–Lavrent’ev problem
.
Mech. of Solids
.
2013
. No
5
. P.
28
33
. (
in Russian
)
5.
N. F.
Morozov
,
P. E.
Tovstik
,
The rod dynamics under a short-term longitudinal impact
.
Vestnik St.Petersburg Univ. Ser. 1
.
2013
. No
3
. P.
131
141
. (
in Russian
)
6.
N. F.
Morozov
,
P. E.
Tovstik
,
Transverse rod vibrations under a short-term longitudinal impact
.
Doklady Physics
.
2013
.
58
(
9
). P.
387
391
.
7.
N. F.
Morozov
,
P. E.
Tovstik
,
T. P.
Tovstik
,
Again on the Ishlinskii-Lavrentyev problem
.
Doklady Physics
.
2014
.
59
(
4
). P.
189
192
.
8.
A. M.
Lyapunov
,
General problem of a motion stability
.
Moscow
.
Leningrad. Gostekhizdat
.
1950
. (
in Russian
)
This content is only available via PDF.
You do not currently have access to this content.