We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

2.
C. B.
Korn
, and
U. S.
Schwarz
,
Phys. Rev. E
77
,
041904
(
2008
)
3.
G.
Bell
,
Science
200
,
618
627
(
1978
).
4.
I.
Cimrák
,
M.
Gusenbauer
, and
T.
Schrefl
,
Computers and Mathematics with Applications
64
,
278
288
(
2012
).
5.
S.
Chen
, and
G.
Doolen
,
Annual Review of Fluid Mechanics
30
,
329
364
(
1998
).
6.
A.
Arnold
,
O.
Lenz
,
S.
Kesselheim
,
R.
Weeber
,
F.
Fahrenberger
,
D.
Roehm
,
P.
Košovan
, and
C.
Holm
, “ESPResSo 3.1 - Molecular Dynamics Software for Coarse–Grained Models,” in
Meshfree Methods for Partial Differential Equations VI, Lecture Notes in Computational Science and Engineering
, edited by
M.
Griebel
, and
M.
Schweitzer
,
2013
, vol.
89
, pp.
1
23
.
7.
I.
Cimrák
,
M.
Gusenbauer
, and
I.
Jančigová
,
Computer Physics Communications
185
,
900
907
(
2014
).
8.
M.
Gusenbauer
,
H.
Nguyen
,
F.
Reichel
,
L.
Exl
,
S.
Bance
,
J.
Fischbacher
,
H.
Özelt
,
A.
Kovacs
,
M.
Brandl
, and
T.
Schrefl
,
Physica B: Condensed Matter
435
,
21
24
(
2014
).
9.
M.
Gusenbauer
,
A.
Kovacs
,
F.
Reichel
,
L.
Exl
,
S.
Bance
,
H.
Ozelt
, and
T.
Schrefl
,
Journal of Magnetism and Magnetic Materials
324
,
977
982
(
2012
).
10.
I.
Cimrák
,
I.
Jančigová
,
K.
Bachratá
, and
H.
Bachratý
, “On elasticity of spring network models used in blood flow simulations in ESPResSo,” in
III International Conference on Particle-based Methods – Fundamentals and Applications PARTICLES 2013
, edited by
M.
Bisschoff
,
E.
Oñate
,
D.
Owen
,
E.
Ramm
, and
P.
Wriggers
,
2013
, pp.
133
144
.
11.
I.
Jančigová
, and
R.
Tóthová
, “Scalability of forces in mesh-based models of elastic objects,” in
ELEKTRO 2014: 10th International Conference
,
IEEE
,
2014
, pp.
562
566
.
12.
I.
Jančigová
, “
On mass distribution in ESPResSo simulations of elastic objects
,” in
MIST
,
2014
,
preprint
.
13.
R.
Tóthová
,
I.
Jančigová
, and
I.
Cimrák
, “Energy contributions of different elastic moduli in mesh-based modeling of deformable object,” in
ELEKTRO 2014: 10th International Conference
,
IEEE
,
2014
, pp.
634
638
.
14.
R.
Tóthová
, “
Comparison of different formulas for local area conservation modulus in spring network models
,” in
MIST
,
2014
,
preprint
.
15.
H.
Bachratý
, and
K.
Bachratá
, “
On Modeling Blood Flow in Microfluidic Devices
,” in
ELEKTRO 2014: 10th International Conference
,
IEEE
,
2014
, pp.
562
566
.
16.
R.
Alon
,
S.
Chen
,
K.
Puri
,
E.
Finger
, and
T.
Springer
,
The Journal of Cell Biology
138
,
1169
1180
– (
1997
).
17.
C.
Dong
, and
X. X.
Lei
,
Journal of Biomechanics
33
,
35
43
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.