A three dimensional computational model of fluid-object interaction has been employed in investigation of local stresses during the motion of red blood cells in simple shear flow. The RBC membrane can withstand a finite strain, beyond which it ruptures. The generally accepted threshold value is 4% for the total areal strain. We have designed an in silico experiment where the total areal strain reached 4%. It has been noted previously that locally this value may be much larger with shorter exposure duration. During the simulation, we have analyzed local stresses of the membrane. Besides the areal strain we employed the time of exposure to a certain strain in order to include the possible cumulative damage of the membrane during the process. We have investigated the following two quantities: the maximal local strain and the cumulative load of local strain. We tracked down the locations on the membrane where these quantities reached their maximal values. We suggest that the cumulative load of local areal strain may be an appropriate measure to determine the location where the cell ruptures.

1.
E.
Evans
,
R.
Waugh
, and
L.
Melnik
,
Biophysical Journal
16
,
585
595
(
1976
).
2.
M.
Dupin
,
I.
Halliday
,
C.
Care
, and
L.
Alboul
,
Phys Rev E Stat Nonlin Soft Matter Phys.
75
,
066707
(
2007
).
3.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
,
Biophysical Journal
98
,
2215
2225
(
2010
).
4.
M.
Nakamura
,
S.
Bessho
, and
S.
Wada
,
International Journal for Numerical Methods in Biomedical Engineering
29
,
114
128
(
2013
).
5.
M.
Dao
,
C.
Lim
, and
S.
Suresh
,
Journal of the Mechanics and Physics of Solids
51
,
2259
2280
(
2003
),
proceedings of a Symposium on Dynamic Failure and Thin Film Mechanics, honoring Professor L.B. Freund
.
6.
I.
Cimrák
,
I.
Jančigová
,
K.
Bachratá
, and
H.
Bachratý
, “
On elasticity of spring network models used in blood flow simulations in ESPResSo
,” in
III International Conference on Particle-based Methods – Fundamentals and Applications PARTICLES 2013
, edited by
M.
Bisschoff
,
E.
Oñate
,
D.
Owen
,
E.
Ramm
, and
P.
Wriggers
,
2013
, pp.
133
144
.
7.
I.
Cimrák
,
M.
Gusenbauer
, and
I.
Jančigová
,
Computer Physics Communications
185
,
900
907
(
2014
).
8.
I.
Cimrák
,
I.
Jančigová
, and
R.
Tóthová
, “
Recent advances in mesh-based modeling of individual cells in biological fluids
,” in
DT 2014: 10th International Conference on Digital Technologies
,
2014
,
preprint
.
9.
T.
Odenthal
,
B.
Smeets
,
P.
Van Liedekerke
,
E.
Tijskens
,
H.
Van Oosterwyck
, and
H.
Ramon
,
PLoS Comput Biol
9
,
e1003267
(
2013
).
10.
I.
Jancigova
, and
R.
Tothova
, “
Scalability of forces in mesh-based models of elastic objects
,” in
ELEKTRO, 2014: 10th International Conference
,
2014
, pp.
562
566
.
11.
A.
Arnold
,
O.
Lenz
,
S.
Kesselheim
,
R.
Weeber
,
F.
Fahrenberger
,
D.
Roehm
,
P.
Košovan
, and
C.
Holm
, “ESPResSo 3.1 — Molecular Dynamics Software for Coarse-Grained Models,” in
Meshfree Methods for Partial Differential Equations VI
, edited by
M.
Griebel
, and
M. A.
Schweitzer
,
Springer
,
2013
, vol.
89
of
Lecture Notes in Computational Science and Engineering
, pp.
1
23
.
12.
M.
Gusenbauer
,
H.
Nguyen
,
F.
Reichel
,
L.
Exl
,
S.
Bance
,
J.
Fischbacher
,
H.
Özelt
,
A.
Kovacs
,
M.
Brandl
, and
T.
Schrefl
,
Physica B: Condensed Matter
435
,
21
24
(
2014
).
13.
A.
Henderson
,
ParaView guide, A Parallel Visualization Application
,
Tech. rep
.,
Kitware Inc.
(
2007
).
14.
S.
Lee
,
K.
Ahn
,
S.
Lee
,
K.
Sun
,
P.
Goedhart
, and
M.
Hardeman
,
Korea-Australia Rheology Journal
16
,
141
146
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.