Applications of clustering and classification techniques can be proved very significant in both digital and physical (paper-based) libraries. The most essential application, document classification and clustering, is crucial for the content that is produced and maintained in digital libraries, repositories, databases, social media, blogs etc., based on various tags and ontology elements, transcending the traditional library-oriented classification schemes. Other applications with very useful and beneficial role in the new digital library environment involve document routing, summarization and query expansion. Paper-based libraries can benefit as well since classification combined with advanced material characterization techniques such as FTIR (Fourier Transform InfraRed spectroscopy) can be vital for the study and prevention of material deterioration. An improved two-level self-organizing clustering architecture is proposed in order to enhance the discrimination capacity of the learning space, prior to classification, yielding promising results when applied to the above mentioned library tasks.

This content is only available via PDF.
You do not currently have access to this content.