We consider a deformable body that occupies a region D in the plane. In our model, the body’s elasticity tensor H(x) is the restriction to D of a second-order mean-square continuous random field. Under translation, the expected value and the correlation tensor of the field H(x) do not change. Under action of an arbitrary element k of the orthogonal group O(2), they transform according to the reducible orthogonal representation kS2(S2(k)) of the above group. We find the spectral expansion of the correlation tensor R(x) of the elasticity field as well as the expansion of the field itself in terms of stochastic integrals with respect to a family of orthogonal scattered random measures.

This content is only available via PDF.
You do not currently have access to this content.