Physical theory of meteors developing since 30s of the last century, based on two ordinary differential equations: the equation of motion for the center of mass of meteoroid and equation of meteoroid ablation. These equations contain drag and heat transfer coefficients, which are share of momentum and energy transferred from gas to meteoroid and effective enthalpy of mass loss. Accounting for different values of these coefficients substantially changes meteoroid ballistics compared with the results of simple physical theory of meteors. For the drag coefficient a simple interpolation formula is valid for all flow regimes and depends on the Reynolds number. The heat transfer coefficient represented in the form of the approximation depending on density and meteoroid radius. Based on the law of conservation of mass and energy at the front of meteoroid melting and evaporation the explicit expression for the effective enthalpy of mass loss Q was obtained, depending on the speed of the meteoroid and heterogeneous reactions on the surface. Classical solution gives a significant deviation from the exact one obtained in present study for small bodies (1 mm) at high altitudes and high speeds.

This content is only available via PDF.
You do not currently have access to this content.