In this paper is presented a 2D approach to finite element modeling and an analytical calculus of a single lap bonded joint. As adherent material were selected a sheet of wood, aluminum and titanium. For adhesive part were selected Bison Super Wood D3 in case of the wood single lap joint and an epoxy resin type DGEBA-TETA for gluing together aluminum and titanium parts. In the article is described a combined method, which consists in the placement of the piezoelectric actuator inside of the adhesive part, in order to determine the tensile stress in the overlap joint. A comparison between the analytical and numerical results has been achieved through a multiphysics modeling - electrical and mechanical coupled problem. The technique used to calculate the mechanical parameters (First Principal Stress, displacements) was the three-point bending test, where different forces were applied in the mid-span of the structure, in order to maintain a constant displacement rate. The length of the overlap joint was modified from 20 to 50 mm.

This content is only available via PDF.
You do not currently have access to this content.