Currently, the most popular way of detecting Extra-solar planets (exoplanets) is via the Transit Method. This method is limited only to planets with orbits such that we observe them transiting their host star. In this work in progress, we propose to identify non-transiting exoplanets in the data currently being collected by the Kepler Space Telescope by detecting orbital phase reflected light variations. Since such variations are due to light from the host star reflected by the planet, we expect this method to work best on closely orbitting large planets. Using the Metropolis-Hastings Monte Carlo and Nested Sampling algorithms, we will determine the presence or absence of nontransiting planets and estimate their orbital parameters such as, orbital inclination, semi-major axis, period, and eccentricity. Our estimates indicate that the development of this technique has the potential to double the number of detectable planets in the Kepler data sets. Here we demonstrate feasibility using portions of data from one of the first transiting planets detected by Kepler, HAT-P-7b.

This content is only available via PDF.
You do not currently have access to this content.