Closed-cycle Joule-Thomson (JT) cryocoolers have been developed at National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) with the aim of realizing a liquid-helium-free calibration apparatus for cryogenic thermometers between 0.65 K and 25 K. The latest JT cryocooler at NMIJ/AIST consists of a 3He JT cooling circuit and a pulse tube mechanical refrigerator. The characteristics of the apparatus including a residual gas analysis of the JT cooling circuit are presented in this paper. Currently the initial cool-down is performed using a heat-exchange gas. It normally takes about 30 h to reduce the temperature from room temperature to 5 K at the thermometer comparison block of the apparatus. The correct timing of the removal of the heatexchange gas is important for the efficient operation of the apparatus. Incomplete removal of the heat-exchange gas induces excess heat load on the apparatus and thermal disturbances. Some examples of abrupt temperature bursts are discussed in this paper. Mechanical refrigerators generate cyclic mechanical vibrations, and precision resistance thermometers are usually very sensitive to a mechanical vibration. The measured vibration level of the developed apparatus is reported. The damage to the apparatus due to the magnitude 9.0 earthquake on March 11, 2011, and possible countermeasures in the case of future earthquakes are also discussed.

This content is only available via PDF.
You do not currently have access to this content.