This article researches CFD simulations of the subsonic wind tunnel at Xi'an Jiaotong University's Laboratory of Thermal Turbo-machines. The wind tunnel cross section measures 800×600 mm2, and the simulations are conducted on a wind tunnel with a 375 mm chord S809 airfoil at the Reynolds number of one million. The angles of attack for the 2D airfoil range from 0 to 22 degrees. In another set of 2D simulations, a 750 mm chord airfoil is calculated in open-air with no walls restricting airflow. The pressure fields, flow patterns and lift and drag coefficients are compared with each other to show the blockage effects in the wind tunnel. As the results show, the wind tunnel walls directly cause the flow to stream faster and increase the lift and drag values. Another consequence of this channeled flow is that the separated area expands. Moreover, the commencement of the separation also occurs at a smaller angle of attack.

This content is only available via PDF.
You do not currently have access to this content.