As the twin Voyager spacecraft approach the boundary of the heliosphere, they continue returning new and unexplained measurements of the solar wind (SW) protons, energetic particles, and magnetic field that often differ markedly between the two spacecraft. Our recent studies show that time-dependent effects play a crucial role in understanding and interpreting the observational data. Since the SW is unsteady on many different time scales, its interaction with the local interstellar medium (LISM) should reflect the solar rotation and cycle, as well as merged interplanetary disturbances. Even a simplified solar cycle model allowed us to predict in 2009 the possibility of a negative radial velocity component in the SWas the heliopause is approached. Further analysis shows a nearly vanishing latitudinal velocity component, while the longitudinal component becomes comparable substantial. Here we discuss the change of the magnetic field and plasma properties across the heliopause, which is important for the identification of its spacecraft crossing. We discuss the effects of heliopause instabilities and corotating interaction regions, and demonstrate that Voyagers are unlikely to see a sharp boundary between the SW and the LISM, but rather a mixing layer of varying width.

This content is only available via PDF.
You do not currently have access to this content.