In the current work the hydrodynamic interaction between a settling particle and a rising microbubble is investigated using numerical simulations. The simulations are performed in a multiphase direct numerical simulation (DNS) framework, indicating that all relevant spatial and temporal scales are resolved. It is shown that the method predicts that particle-bubble attachment is possible when the initial horizontal distance between their centers is small and that the particle will pass the bubble without attaching when this initial distance is large. Furthermore, it is shown that the probability of a successful attachment is lower if the bubble Eötvös and Morton numbers are significantly larger than unity.

This content is only available via PDF.
You do not currently have access to this content.