We explore the old quantum measurement problem from the perspective of entropic dynamics. The entropic approach contributes two new ideas. First, the dual modes of quantum evolution-either continuous unitary evolution or abrupt wave function collapse during measurement-are unified by virtue of both being special instances of entropic updating of probabilities. The second new idea is that in entropic dynamics particles have only one attribute-position. They have neither momentum nor energy nor any other attributes. The positions have definite albeit unknown values; they are not created by the act of measurement. Other so-called observables can of course be introduced but only as a convenient way to describe more complex position measurements; they are attributes not of the particles but of the probability distributions; their values are effectively created by the act of measurement. We discuss the Born statistical rule for position, which is trivially built into the formalism, and also for more generic observables.

This content is only available via PDF.
You do not currently have access to this content.