During the last decade surface subdivision methods are leading in both industry and research interest due to their ability to generate surfaces defined by an arbitrary topology of vertices. A number of such methods have been developed and are used today in Computer Aided Geometric Design (CAGD). Most of them generate cubic or quadratic surfaces. Methods based on cubic polynomials are the most popular ones since they provide second derivative continuity (C2) on the surface, whereas quadratic methods have only C1 continuity. There are many good reasons for using cubic polynomials: their theory is simple; they have a satisfactory C2 continuity; and they are easier to be developed. This paper presents a curve and surface subdivision method with n‐degree polynomials. In the case of surfaces the method is generalized to handle surfaces defined by arbitrary topological meshes of vertices. It provides Cn−1 continuity and is fairly easy to be developed.

This content is only available via PDF.
You do not currently have access to this content.