In [3], Greenberg showed that n≤6t3 so that μ = nt≤6t4 for a normal subgroup N of level n and index μ having t parabolic classes in the modular group Γ. Accola, [1], improved these to n≤6t2 always and n≤t2 if Γ/N is not abelian. Newman, [5], obtained another generalisation of these results. Hecke groups are generalisations of the modular group. We particularly deal with one of the most important cases, q = 6.

This content is only available via PDF.
You do not currently have access to this content.