Gapped phases of noninteracting fermions, with and without charge conservation and time‐reversal symmetry, are classified using Bott periodicity. The symmetry and spatial dimension determines a general universality class, which corresponds to one of the 2 types of complex and 8 types of real Clifford algebras. The phases within a given class are further characterized by a topological invariant, an element of some Abelian group that can be 0, ℤ, or The interface between two infinite phases with different topological numbers must carry some gapless mode. Topological properties of finite systems are described in terms of K‐homology. This classification is robust with respect to disorder, provided electron states near the Fermi energy are absent or localized. In some cases (e.g., integer quantum Hall systems) the K‐theoretic classification is stable to interactions, but a counterexample is also given.
Skip Nav Destination
Article navigation
14 May 2009
ADVANCES IN THEORETICAL PHYSICS: Landau Memorial Conference
22–26 June 2008
Chernogolokova (Russia)
Research Article|
May 14 2009
Periodic table for topological insulators and superconductors
Alexei Kitaev
Alexei Kitaev
California Institute of Technology, Pasadena, CA 91125, USA
Search for other works by this author on:
AIP Conf. Proc. 1134, 22–30 (2009)
Citation
Alexei Kitaev; Periodic table for topological insulators and superconductors. AIP Conf. Proc. 14 May 2009; 1134 (1): 22–30. https://doi.org/10.1063/1.3149495
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
4,810
Views