The variation of the period of oscillation of a pendulum with the amplitude is known as “circular error” to clockmakers, and can easily be observed even without modern laboratory instruments. There have therefore been many approximate formulae for the pendulum period as a function of the amplitude, but the simple equation due to Denman, which is more accurate than many in the literature, seems to have been forgotten.
(1)
References
1.
N.
Holmes
and C.
Wieman
, “Introductory physics labs: We can do better
,” Phys. Today
71
(1
), 38
(2018
).2.
Peter F.
Hinrichsen
, “Review of approximate equations for the pendulum period
,” Eur. J. Phys
. 42
, 015005
(2020
).3.
Harry H.
Denman
, “Amplitude-dependence of frequency in a linear approximation to the simple pendulum equation
,” Am. J. Phys.
27
, 524
–525
(July 1959
).4.
Herbert
Goldstein
, Classical Mechanics,
2nd ed. (Addison-Wesley Publishing Company
, New York
, 1980
).5.
Herman
Erlichson
, “Galileo’s pendulum
,” Phys. Teach
. 37
, 478
–479
(Nov. 1999
).6.
Gregory L.
Baker
and James A.
Blackburn
, The Pendulum: A Case Study in Physics
(Oxford University Press
, Oxford
, 2005
).7.
Gregory L.
Baker
, Seven Tales of the Pendulum
(Oxford University Press
, Oxford
, 2011
).8.
P.
Onorato
, P.
Mascheretti
, and A.
DeAmbrosis
, “Studying motion along cycloidal paths by means of digital video analysis
,” Eur. J. Phys
. 34
, 921
–930
(2013
).9.
J. E.
Marquina
, M. L.
Marquina
, V.
Marquina
, and J. J.
Hernández-Gómez
, “Leonhard Euler and the mechanics of rigid bodies
,” Eur. J. Phys.
38
, 15001
(2017
).10.
C. J.
Smith
, A Degree Physics: Part I. The General Properties of Matter
(Edward Arnold
, London
, 1960
).11.
George E.
Owen
and Daniel C.
McKown
, “An experiment illustrating the elliptic integral of the first kind
,” Am. J. Phys
. 19
, 188
–189
(March 1951
).12.
João C.
Fernandes
, Pedro J.
Sebastião
, Luís N.
Gonçalves
, and António
Ferraz
, “Study of large-angle anharmonic oscillations of a physical pendulum using an acceleration sensor
,” Eur. J. Phys
. 38
(4
), 045004
(2017
).13.
Henrik B.
Pedersen
, John E. V.
Andersen
, Torsten G.
Nielsen
, Jens Jacob
Iversen
, Folmer
Lyckegaard
, and Frank K.
Mikkelsen
, “An experimental system for studying the plane pendulum in physics laboratory teaching
,” Eur. J. Phys
. 41
, 015701
(2020
).14.
Yavov
Kostov
, Ragib
Morshed
, Barbara
Holing
, Ray
Chen
, and P. B.
Seigel
, “Period-speed analysis of a pendulum
,” Am. J. Phys.
76
, 956
–962
(Oct. 2008
).15.
Peter F.
Hinrichsen
, “The period of the damped non-linear pendulum
,” Eur. J. Phys
. 41
(5
), 055002
(2020
).16.
Stephen T.
Thornton
and Jerry B.
Marion
, Classical Dynamics of Particles and Systems
(Thompson Brooks Cole
, Belmont, CA
, 2004
).17.
Claudio G.
Carvalhaes
and Patrick
Suppes
, “Approximations for the period of the simple pendulum based on the arithmetic-geometric mean
,” Am. J. Phys.
76
, 1150
–1154
(Dec. 2008
).18.
19.
L. Edward
Millet
, “The large-angle pendulum period
,” Phys. Teach
. 41
, 162
–163
(March 2003
).20.
Richard B.
Kidd
and Stuart L.
Fogg
, “A simple formula for the large-angle pendulum period
,” Phys. Teach
. 40
, 81
–83
(Feb. 2002
).21.
M. I.
Molina
, “Simple linearizations of the simple pendulum for any amplitude
,” Phys. Teach
. 35
, 489
–492
(Nov. 1997
).22.
F. M. S.
Lima
and P.
Arun
, “An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
,” Am. J. Phys.
74
, 892
–895
(Oct. 2006
).23.
W. P.
Ganley
, “Simple pendulum approximation
,” Am. J. Phys.
53
, 73
–76
(Jan. 1985
).24.
Augusto
Beléndez
, Enrique
Arribas
, Andrés
Márquez
, Manuel
Ortuño
, and Sergi
Gallego
, “Approximate expressions for the period of a simple pendulum using a Taylor series expansion
,” Eur. J. Phys
. 32
(5
), 1303
–1310
(2011
).© 2021 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2021
Author(s)
AAPT members receive access to The Physics Teacher and the American Journal of Physics as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.