The non-SI unit sverdrup, named to honor Norwegian oceanographer and meteorologist Harald Ulrik Sverdrup (1888-1957), is adopted for quantifying large-scale volume transport by oceanographers, meteorologists, and atmospheric physicists. The sverdrup is used to appraise the volumetric rate of evaporation, precipitation, runoff, transport of ocean current, and so on. Its symbol is Sv, which should not be confused with the SI unit sievert and the non-SI unit svedberg, both having the same symbol. One sverdrup is equivalent to volume transport of one million cubic meters per second. The aim of this paper is to illustrate the numbers associated with water transport over the globe in this unit.

1.
Sverdrup
,” Wikipedia, https://en.wikipedia.org/wiki/Sverdrup.
2.
Joseph L.
Mulligan
and
H. Gerhard
Hertz
, “
An unpublished lecture by Heinrich Hertz: ‘On the energy balance of the Earth,’
Am. J. Phys
.
65
,
36
45
(
Jan
.
1997
).
3.
M. I.
Lvovich
,
World Water Balance
(General Report), http://hydrologie.org/redbooks/a092/093019.pdf.
4.
Ellen
Gray
, “
NASA balances water budget with new estimates of liquid assets
,”
Phys.org
, https://phys.org/news/2015-07-nasa-liquid-assets.html.
5.
M.
Rodell
 et al., “
The observed state of the water cycle in the early 21st century
,”
J. Climate
28
(
21
),
8289
8318
(
2015
).
6.
A data-integrating model is one that inputs data from multiple sources and uses our knowledge of the relevant physics as represented in the model to combine the data such that the outputs are consistent with each other and with the physics (conservation of mass, conservation of energy, etc.). For example, GLDAS (Global Land Data Assimilation System) integrates meteorological data (e.g., precipitation, solar radiation, etc.), parameter data (e.g., vegetation type, soil type, etc.), and other observables (e.g., snow cover) within sophisticated numerical land surface models in order to produce optimal estimates of land surface states (e.g., soil moisture and temperature) and fluxes (e.g., runoff and latent heat flux).
7.
Ven
Te Chow
,
David R.
Maidment
, and
Larry W.
Mays
,
Applied Hydrology
(
McGraw-Hill
,
New York
,
1988
), p.
5
.
8.
J.
Keill
,
An Examination of Dr. Burnet’s Theory of the Earth
(
Oxford, Theatre
,
1698
), p.
224
.
9.
L.
De Bupfon
,
Histoire Naturelle, Générale et Particulière
, Vol.
2
, new ed. (
F. Dufart, Paris
,
1749
), p.
495
.
10.
R.
Fritzsche
,
Niederschlag, Abfluss und Verdunstung auf den Landflachen der Erde
,
Zeitschrift für Gewässerkunde
, Bd. 7, (
Druck von W. Baensch
,
Dresden
,
1906
)
11.
G.
Wust
,
Oberflachensalzgehalt, Verdunstung und Niederschlag auf den Weltmeere, Festschrift f. Norbert Krebs
(
Landerkundliche Forschung
,
Stuttgart
,
1936
) pp.
347
359
.
12.
H. U.
Sverdrup
,
Oceanography for Meteorologists
(
Daya Books
,
2001
), p.
67
.
13.
M. I.
Lvovich
, “
River Runoff, Water Regime Types of Rivers (of the World)
,” in
Physico-Geographical Atlas of the World
(
1964
), sheets
58
61
.
14.
Igor A.
Shiklomanov
,
World Water Resources: A New Appraisal and Assessment for the 21st Century
(
UNESCO
,
Paris
,
1998
).
15.
Robert H.
Romer
, ‘‘
Units—SI-only, or multicultural diversity
,’’
Am. J. Phys.
67
,
13
16
(
Jan
.
1999
).
16.
Roy H.
Garstang
, “
Understanding vs authority
,” letter to the editor,
Am. J. Phys.
67
,
467
(
June
1999
).
17.
Herman
Erlichson
, “
The importance of the past
,” letter to the editor,
Am. J. Phys.
67
,
467
(
June
1999
).
AAPT members receive access to The Physics Teacher and the American Journal of Physics as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.