Measuring one physical quantity as a function of another often requires making some choices prior to the measurement process. Two of these choices are: the data range where measurements should focus and the number (n) of data points to acquire in the chosen data range. Here, we consider data range as the interval of variation of the independent variable (x) that is associated with a given interval of variation of the dependent variable (y). We analyzed the role of the width and lower endpoint of measurement data range on parameter estimation by linear regression. We show that, when feasible, increasing data range width is more effective than increasing the number of data points on the same data range in reducing the uncertainty in the slope of a regression line. Moreover, the uncertainty in the intercept of a regression line depends not only on the number of data points but also on the ratio between the lower endpoint and the width of the measurement data range, reaching its minimum when the dataset is centered at the ordinate axis. Since successful measurement methodologies require a good understanding of factors ruling data analysis, it is pedagogically justified and highly recommended to teach these two subjects alongside each other.
Skip Nav Destination
Article navigation
September 2017
PAPERS|
September 01 2017
The Role of Data Range in Linear Regression
M. A. Salgueiro da Silva;
M. A. Salgueiro da Silva
Faculty of Sciences, University of Porto
, and CITEUC, Portugal
Search for other works by this author on:
T. M. Seixas
T. M. Seixas
Faculty of Sciences, University of Porto
, and CITEUC, Portugal
Search for other works by this author on:
Phys. Teach. 55, 371–372 (2017)
Citation
M. A. Salgueiro da Silva, T. M. Seixas; The Role of Data Range in Linear Regression. Phys. Teach. 1 September 2017; 55 (6): 371–372. https://doi.org/10.1119/1.4999736
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Explaining Quanta with Optical Illusions
Gianluca Li Causi
Sauntering Sauropods: The Preferred Walking Speeds of the Largest Land Animals That Ever Lived
Scott A. Lee, Justyna Slowiak
Secondary and University Students’ Descriptions of Quantum Superposition
Nicoline Berit Campbell Birkeland, Maria Vetleseter Bøe
Related Content
The Importance of Measurement Data Spacing
Phys. Teach. (September 2015)
Analysis of categorical response data: Use logistic regression rather than endpoint-difference scores or discriminant analysis
J. Acoust. Soc. Am. (November 2009)
Nonparametric truncated spline regression on modelling mean years schooling of regencies in Java
AIP Conf. Proc. (December 2019)
A physical model for intuiting linear regression
Am. J. Phys. (October 2020)
Modeling distortion product otoacoustic emission input/output functions using segmented regression
J. Acoust. Soc. Am. (November 2006)