We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1–100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

1.
S.
Kempf
,
R.
Srama
,
M.
Horanyi
,
M.
Burton
,
S.
Helfert
,
G.
Moragas-Klostermeyer
,
M.
Roy
, and
E.
Grün
,
“High-velocity streams of dust originating from Saturn,”
Nature
433
,
289
291
(
2005
).
2.
H.
Kruger
,
P.
Geissler
,
M.
Horanyi
,
A.
Graps
,
S.
Kempf
,
R.
Srama
,
G.
Moragas-Klostermeyer
,
R.
Moissl
,
T.
Johnson
, and
E.
Grün
,
“Jovian dust streams: A monitor of Io's volcanic plume activity,”
Geophys. Res. Letter
30
(
2010
).
3.
A.
Shu
,
A.
Collette
,
K.
Drake
,
E.
Gruen
,
M.
Horanyi
,
S.
Kempf
,
A.
Mocker
,
T.
Munsat
,
P.
Northway
,
R.
Srama
,
Z.
Sternovsky
, and
E.
Thomas
,
“3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies,”
Rev. Sci. Instruments
83
,
075108
(
2012
).
4.
H. P.
Stabler
,
“Inexpensive dc electrometer,”
Am. J. Phys.
28
(
7
),
xiii
xiv
(
1960
).
5.
J.
Dean
and
S.
Edmonds
,
“An inexpensive vacuum-tube electrometer,”
Am. J. Phys.
36
(
11
),
969
976
(
1968
).
6.
F. W.
Sears
and
P. A.
Stokstad
,
“Electrostatics demonstrations with a vibrating reed electrometer,”
Am. J. Phys.
36
(
8
),
752
756
(
1968
).
7.
F. W.
Inman
and
C. E.
Miller
,
“An inexpensive electrometer for modern physics experiments,”
Am. J. Phys.
40
(
4
),
623
624
(
1972
).
8.
M.
Stübig
,
G.
Schfer
,
T. -M.
Ho
,
R.
Srama
, and
E.
Grün
,
“Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source,”
Planet. Space Sci.
49
(
8
),
853
858
(
2001
).
9.
H.
Shelton
,
J. C. D.
Hendricks
, and
R. F.
Wuerker
,
“Electrostatic acceleration of microparticles to hypervelocities,”
J. App. Phys.
31
(
7
),
1243
1246
(
1960
).
10.
G. T.
Delory
,
R. C.
Elphic
,
A.
Colaprete
,
P.
Mahay
, and
M.
Horanyi
,
“The LADEE Mission: The next step after the discovery of water on the Moon,”
Lunar and Planetary Institute Science Conference Abstracts
41
(
2010
).
11.
R.
Srama
 et al.,
“The Cassini cosmic dust analyzer,”
Space Sci. Rev.
114
,
465
518
(
2004
).
AAPT members receive access to The Physics Teacher and the American Journal of Physics as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.